Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacteria-mediated resistance of neutrophil extracellular traps to enzymatic degradation drives the formation of dental calculi

A Publisher Correction to this article was published on 02 April 2024

This article has been updated

Abstract

Dental calculi can cause gingival bleeding and periodontitis, yet the mechanism underlying the formation of such mineral build-ups, and in particular the role of the local microenvironment, are unclear. Here we show that the formation of dental calculi involves bacteria in local mature biofilms converting the DNA in neutrophil extracellular traps (NETs) from being degradable by the enzyme DNase I to being degradation resistant, promoting the nucleation and growth of apatite. DNase I inhibited NET-induced mineralization in vitro and ex vivo, yet plasma DNases were ineffective at inhibiting ectopic mineralization in the oral cavity in rodents. The topical application of the DNA-intercalating agent chloroquine in rodents fed with a dental calculogenic diet reverted NET DNA to its degradable form, inhibiting the formation of calculi. Our findings may motivate therapeutic strategies for the reduction of the prevalence of the deposition of bacteria-driven calculi in the oral cavity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evidence of neutrophil extracellular traps in human body stones.
Fig. 2: NETs adhered on calculus and induced further mineralization ex vivo.
Fig. 3: NETs induced CaP mineralization in vitro.
Fig. 4: Molecular dynamics simulation of NET-induced mineralization.
Fig. 5: The elimination of NET disrupted ectopic mineralization ex vivo and in vitro, but not in vivo.
Fig. 6: DNase I could not inhibit NET-induced mineralization with the involvement of mature biofilm in vitro.
Fig. 7: Mature bacterial biofilm induced NET B-DNA to become NET Z-DNA in vitro and in vivo.
Fig. 8: Inhibition of ectopic mineralization in vivo via the regulation of NET-DNA configuration.

Similar content being viewed by others

Data availability

The main data supporting the results of this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request.

Change history

References

  1. Tasian, G. E. et al. Annual incidence of nephrolithiasis among children and adults in South Carolina from 1997 to 2012. Clin. J. Am. Soc. Nephrol. 11, 488–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. White, D. J. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur. J. Oral Sci. 105, 508–522 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Jepsen, S., Deschner, J., Braun, A., Schwarz, F. & Eberhard, J. Calculus removal and the prevention of its formation. Periodontol. 2000 55, 167–188 (2011).

    Article  PubMed  Google Scholar 

  4. Krisdapong, S., Prasertsom, P., Rattanarangsima, K., Sheiham, A. & Tsakos, G. The impacts of gingivitis and calculus on Thai children’s quality of life. J. Clin. Periodontol. 39, 834–843 (2012).

    Article  PubMed  Google Scholar 

  5. Rule, A. D. et al. The ROKS nomogram for predicting a second symptomatic stone episode. J. Am. Soc. Nephrol. 25, 2878–2886 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hong, I. et al. Clinical and microbiological efficacy of pyrophosphate containing toothpaste: a double-blinded placebo-controlled randomized clinical trial. Microorganisms 8, 1806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaernewyck, V., Arzi, B., Sanders, N. N., Cox, E. & Devriendt, B. Mucosal vaccination against periodontal disease: current status and opportunities. Front. Immunol. 12, 768397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, H. et al. Dental calculi of Siberian Natives, Russian Settlers, and Korean People of Joseon Dynasty Period in the 16th to 19th Century Eurasia Continent. BioMed. Res. Int. 2022, 5765604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hazen, S. P. Supragingival dental calculus. Periodontol. 2000 8, 125–136 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Kambalyal, P., Kambalyal, P. & Hungund, S. Comparison of salivary calcium level in smokers and non-smokers with chronic periodontitis, aggressive periodontitis, and healthy controls. J. Int. Soc. Prev. Community Dent. 5, S68–S73 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Albandar, J. M. et al. Gingival state and dental calculus in early-onset periodontitis. J. Periodontol. 67, 953–959 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Akcali, A. & Lang, N. P. Dental calculus: the calcified biofilm and its role in disease development. Periodontol. 2000 76, 109–115 (2018).

    Article  PubMed  Google Scholar 

  13. Schapher, M. et al. Neutrophil extracellular traps promote the development and growth of human salivary stones. Cells 9, 2139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Munoz, L. E. et al. Neutrophil extracellular traps initiate gallstone formation. Immunity 51, 443–450.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Haq Sikder, M. N., Itoh, M., Iwatsuki, N. & Shinoda, H. Inhibitory effect of a novel bisphosphonate, TRK-530, on dental calculus formation in rats. J. Periodontol. 75, 537–545 (2004).

    Article  Google Scholar 

  16. Niu, L. N. et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat. Mater. 16, 370–378 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Jiao, K. et al. Complementarity and uncertainty in intrafibrillar mineralization of collagen. Adv. Funct. Mater. 26, 6858–6875 (2016).

    Article  CAS  Google Scholar 

  18. Shen, M. J. et al.Extracellular DNA: a missing link in the pathogenesis of ectopic mineralization. Adv. Sci. 9, 2103693 (2022).

    Article  CAS  Google Scholar 

  19. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lemos, J. A. et al. The biology of Streptococcus mutans. Microbiol. Spectr. 7, GPP3-0051-2018 (2019).

    Article  Google Scholar 

  21. Buzzo, J. R. et al. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 184, 5740–5758.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bezanilla, M. et al. Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys. J. 67, 2454–2459 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suck, D. & Oefner, C. Structure of DNase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA. Nature 321, 620–625 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Ramesh, N. & Brahmachari, S. K. Structural alteration from non-B to B-form could reflect DNase I hypersensitivity. J. Biomol. Struct. Dyn. 6, 899–906 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, S. H. et al. Unveiling the pathway to Z-DNA in the protein-induced B–Z transition. Nucleic Acids Res. 46, 4129–4137 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwakye-Berko, F. & Meshnick, S. Sequence preference of chloroquine binding to DNA and prevention of Z-DNA formation. Mol. Biochem. Parasitol. 39, 275–278 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Pires, R. H., Felix, S. B. & Delcea, M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy. Nanoscale 8, 14193–14202 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Haider, P. et al. Neutrophil extracellular trap degradation by differently polarized macrophage subsets. Arterioscler. Thromb. Vasc. Biol. 40, 2265–2278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Domer, D. et al. Neutrophil extracellular traps activate proinflammatory functions of human neutrophils. Front. Immunol. 12, 636954 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jimenez-Alcazar, M. et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 358, 1202–1206 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Roberts-Harry, E. A. & Clerehugh, V. Subgingival calculus: where are we now? A comparative review. J. Dent. 28, 93–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Akcali, A. & Lang, N. P. Dental calculus: the calcified biofilm and its role in disease development. Periodontol. 2000 76, 109–115 (2018).

  34. Surma, S. et al. Periodontitis, blood pressure, and the risk and control of arterial hypertension: epidemiological, clinical, and pathophysiological aspects—review of the literature and clinical trials. Curr. Hypertens. Rep. 23, 27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. He, J. Y. et al. The Janus nature of nanohydroxyapatite in tumor progression. Adv. Funct. Mater. 32, 2107599 (2022).

  36. Schumski, A. et al. Endotoxinemia accelerates atherosclerosis through electrostatic charge-mediated monocyte adhesion. Circulation 143, 254–266 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Reznikov, N. et al. A materials science vision of extracellular matrix mineralization. Nat. Rev. Mater. 1, 16041 (2016).

    Article  CAS  Google Scholar 

  38. Li, B. et al. NETosis in psoriatic arthritis: serum MPO–DNA complex level correlates with its disease activity. Front. Immunol. 13, 911347 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Najmeh, S., Cools-Lartigue, J., Giannias, B., Spicer, J. & Ferri, L. E. Simplified human neutrophil extracellular traps (NETs) isolation and handling. J. Vis. Exp. 16, e52687 (2015).

    Google Scholar 

  40. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Y. et al. Production of d-xylonate from corn cob hydrolysate by a metabolically engineered Escherichia coli strain. ACS Sustain. Chem. Eng. 7, 2160–2168 (2018).

    Article  Google Scholar 

  42. Gutiérrez-Venegas, G., Guadarrama-Solís, A., Muñoz-Seca, C. & Arreguín-Cano, J. A. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts. Int. J. Clin. Exp. Pathol. 8, 15563 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Kargarpour, Z. et al. Platelet-rich fibrin can neutralize hydrogen peroxide-induced cell death in gingival fibroblasts. Antioxidants 9, 560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583, 133–138 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Clinical Research Center for Oral Diseases (LCA202004), National Natural Science Foundation of China (no. 82325012 to Li-na Niu and no. 82170978 to K.J.), the Shaanxi Key Scientific and Technological Innovation Team (no. 2020TD-033 to Li-na Niu). Parts of the figures were drawn using pictures from Servier Medical Art. Servier Medical Art by Servier is licenced under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licences/by/3.0).

Author information

Authors and Affiliations

Authors

Contributions

M.W., K.J., Yi-na Zhu and Q.W. contributed to the study design, data acquisition and interpretation. Yi-peng Zhang contributed to the DNA manipulation of Escherichia coli. Long-zhang Niu, C.L. and J.S. contributed to data analysis and interpretation. W.L. and Z.R. performed the animal experiments. H.L. provided the clinical samples. F.T. refined the paper. Li-na Niu developed the concept and supervised experiments. All authors contributed to writing the paper.

Corresponding author

Correspondence to Li-na Niu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Martin Herrmann, Sunita Ho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Mc., Jiao, K., Zhu, Yn. et al. Bacteria-mediated resistance of neutrophil extracellular traps to enzymatic degradation drives the formation of dental calculi. Nat. Biomed. Eng (2024). https://doi.org/10.1038/s41551-024-01186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-024-01186-7

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology