Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair

Abstract

The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1–6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%). We used the method to produce T cells with an engineered T-cell receptor or a chimaeric antigen receptor and show that the cells maintained low levels of exhaustion markers and excellent capacities for proliferation and cytokine production and that they elicited potent antitumour cytotoxicity in vitro and in mice. The method is readily adaptable to current good manufacturing practices and scale-up processes, and hence may be used as an alternative to viral vectors for the production of genetically engineered T cells for cancer immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal optimization enhances delivery, expansion and targeted knock-in in human T cells.
Fig. 2: HMEJ-mediated integration allows for high-efficiency, targeted knock-in.
Fig. 3: Linearization of template is required for the effective integration of short homology HMEJ template.
Fig. 4: HMEJ allows for the efficient integration of very large templates.
Fig. 5: HMEJ-engineered CD19 CAR T cells are phenotypically similar to lentivirally transduced cells.
Fig. 6: CD19 CAR T cells control Raji tumours in vivo regardless of the engineering method.

Similar content being viewed by others

Data availability

The NGS sequencing data are available from the NCBI’s repository with the biosample accession numbers SAMN37790969, SAMN37790970, SAMN37790971, SAMN37790972, SAMN37790973, SAMN37790974, SAMN37790975, SAMN37790976, SAMN37790977 and SAMN37790978. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Khan, S. et al. Role of recombinant DNA technology to improve life. Int. J. Genomics Proteomics 2016, 2405954 (2016).

    Google Scholar 

  2. Spolski, R., Li, P. & Leonard, W. J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Maetzig, T., Galla, M., Baum, C. & Schambach, A. Gammaretroviral vectors: biology, technology and application. Viruses 3, 677–713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dotti, G., Gottschalk, S., Savoldo, B. & Brenner, M. K. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol. Rev. 257, 107–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Walther, W. & Stein, U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60, 249–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target Ther. 6, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soundara Rajan, T., Gugliandolo, A., Bramanti, P. & Mazzon, E. In vitro-transcribed mRNA chimeric antigen receptor T cell (IVT mRNA CAR T) therapy in hematologic and solid tumor management: a preclinical update. Int. J. Mol. Sci. 21, 6514 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kebriaei, P. et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Invest. 126, 3363–3376 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Monjezi, R. et al. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 31, 186–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Li, X. et al. A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. Proc. Natl Acad. Sci. USA 110, E478–E487 (2013).

    CAS  PubMed  Google Scholar 

  11. Bishop, D. C. et al. PiggyBac-engineered T cells expressing CD19-specific CARs that lack IgG1 Fc spacers have potent activity against B-ALL xenografts. Mol. Ther. 26, 1883–1895 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Schober, K. et al. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat. Biomed. Eng. 3, 974–984 (2019).

    Article  PubMed  Google Scholar 

  14. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Capecchi, M. R. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70–76 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Puchta, H., Dujon, B. & Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21, 5034–5040 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, J., Chung, J.-H., Kim, H. M., Kim, D.-W. & Kim, H. Designed nucleases for targeted genome editing. Plant Biotechnol. J. 14, 448–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR–Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Webber, B. R. et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson, M. J., Laoharawee, K., Lahr, W. S., Webber, B. R. & Moriarity, B. S. Engineering of primary human B cells with CRISPR/Cas9 targeted nuclease. Sci. Rep. 8, 12144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Osborn, M. J. et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol. Ther. 24, 570–581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bak, R. O., Dever, D. P. & Porteus, M. H. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat. Protoc. 13, 358–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. June, C. H., Blazar, B. R. & Riley, J. L. Engineering lymphocyte subsets: tools, trials and tribulations. Nat. Rev. Immunol. 9, 704–716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sather, B. D. et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 7, 307ra156 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Osborn, M. J. et al. CRISPR/Cas9-based cellular engineering for targeted gene overexpression. Int. J. Mol. Sci. 19, 946 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pomeroy, E. J. et al. A genetically engineered primary human natural killer cell platform for cancer immunotherapy. Mol. Ther. 28, 52–63 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samulski, R. J. & Muzyczka, N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev. Virol. 1, 427–451 (2014).

    Article  PubMed  Google Scholar 

  31. Deyle, D. R., Li, L. B., Ren, G. & Russell, D. W. The effects of polymorphisms on human gene targeting. Nucleic Acids Res. 42, 3119–3124 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Ang, J. X. D. et al. Considerations for homology-based DNA repair in mosquitoes: impact of sequence heterology and donor template source. PLoS Genet. 18, e1010060 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kan, Y., Ruis, B., Lin, S. & Hendrickson, E. A. The mechanism of gene targeting in human somatic cells. PLoS Genet. 10, e1004251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chandran, S. S. & Klebanoff, C. A. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 290, 127–147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Semenova, N. et al. Multiple cytosolic DNA sensors bind plasmid DNA after transfection. Nucleic Acids Res. 47, 10235–10246 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maurisse, R. et al. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 10, 9 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Paludan, S. R. & Bowie, A. G. Immune sensing of DNA. Immunity 38, 870–880 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Clark, K., Plater, L., Peggie, M. & Cohen, P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J. Biol. Chem. 284, 14136–14146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Richters, A. et al. Identification and further development of potent TBK1 inhibitors. ACS Chem. Biol. 10, 289–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Z., Qiu, S., Zhang, X. & Chen, W. Optimized DNA electroporation for primary human T cell engineering. BMC Biotechnol. 18, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kay, M. A., He, C.-Y. & Chen, Z.-Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 28, 1287–1289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Obst, R. The timing of T cell priming and cycling. Front. Immunol. 6, 563 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yu, L. & Liu, P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct. Target Ther. 6, 170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vance, R. E. Cytosolic DNA sensing: the field narrows. Immunity 45, 227–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Zahid, A., Ismail, H., Li, B. & Jin, T. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front. Immunol. 11, 613039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wierson, W. A. et al. Efficient targeted integration directed by short homology in zebrafish and mammalian cells. Elife 9, e53968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xue, C. & Greene, E. C. DNA repair pathway choices in CRISPR–Cas9-mediated genome editing. Trends Genet. 37, 639–656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, X. et al. Efficient SSA-mediated precise genome editing using CRISPR/Cas9. FEBS J. 285, 3362–3375 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Bewg, W. P., Ci, D. & Tsai, C.-J. Genome editing in trees: from multiple repair pathways to long-term stability. Front. Plant Sci. 9, 1732 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Terada, K. et al. Isolation of TCR genes with tumor-killing activity from tumor-infiltrating and circulating lymphocytes in a tumor rejection cynomolgus macaque model. Mol. Ther. Oncolytics 24, 77–86 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. de Vree, P. J. P. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol. 32, 1019–1025 (2014).

    Article  PubMed  Google Scholar 

  56. Yao, X. et al. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27, 801–814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dahlman, J. E. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 1159–1161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Philip, B. et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124, 1277–1287 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Berger, A. Th1 and Th2 responses: what are they? Brit. Med. J. 321, 424 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. DeRenzo, C. & Gottschalk, S. Genetic modification strategies to enhance CAR T cell persistence for patients with solid tumors. Front. Immunol. 10, 218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, X. et al. A chimeric switch–receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yeku, O. O., Purdon, T. J., Koneru, M., Spriggs, D. & Brentjens, R. J. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci. Rep. 7, 10541 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yu, S., Yi, M., Qin, S. & Wu, K. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol. Cancer 18, 125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brandt, L. J. B., Barnkob, M. B., Michaels, Y. S., Heiselberg, J. & Barington, T. Emerging approaches for regulation and control of CAR T cells: a mini review. Front. Immunol. 11, 326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Srivastava, S. et al. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35, 489–503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raes, L., De Smedt, S. C., Raemdonck, K. & Braeckmans, K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol. Adv. 49, 107760 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Odé, Z., Condori, J., Peterson, N., Zhou, S. & Krenciute, G. CRISPR-mediated non-viral site-specific gene integration and expression in T cells: protocol and application for T-cell therapy. Cancers 12, 1704 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pearce, E. L., Poffenberger, M. C., Chang, C.-H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Paludan, S. R., Reinert, L. S. & Hornung, V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat. Rev. Immunol. 19, 141–153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lock, D. et al. Automated, scaled, transposon-based production of CAR T cells. J. Immunother. Cancer 10, e005189 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schweizer, M. & Merten, O.-W. Large-scale production means for the manufacturing of lentiviral vectors. Curr. Gene Ther. 10, 474–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Merten, O.-W., Hebben, M. & Bovolenta, C. Production of lentiviral vectors. Mol. Ther. Methods Clin. Dev. 3, 16017 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kaiser, A. D. et al. Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther. 22, 72–78 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, X. & Rivière, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gee, A. P. GMP CAR-T cell production. Best Pract. Res. Clin. Haematol. 31, 126–134 (2018).

    Article  PubMed  Google Scholar 

  79. Alves, C. P. A., Prazeres, D. M. F. & Monteiro, G. A. Minicircle biopharmaceuticals—an overview of purification strategies. Front. Chem. Eng. 2, (2021).

  80. Tian, Y., Li, Y., Shao, Y. & Zhang, Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J. Hematol. Oncol. 13, 54 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakamura, K. et al. Autologous antigen-presenting cells efficiently expand piggyBac transposon CAR-T cells with predominant memory phenotype. Mol. Ther. Methods Clin. Dev. 21, 315–324 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bishop, D. C. et al. Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-Modified CD19 CAR T cells. Blood 138, 1504–1509 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Lukjanov, V., Koutná, I. & Šimara, P. CAR T-cell production using nonviral approaches. J. Immunol. Res. 2021, 6644685 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chicaybam, L. et al. Transposon-mediated generation of CAR-T cells shows efficient anti B-cell leukemia response after ex vivo expansion. Gene Ther. 27, 85–95 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsukahara, T. et al. CD19 target-engineered T-cells accumulate at tumor lesions in human B-cell lymphoma xenograft mouse models. Biochem. Biophys. Res. Commun. 438, 84–89 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu, S.-I. et al. Pre-clinical assessment of chimeric antigen receptor t cell therapy targeting CD19+ B cell malignancy. Ann. Transl. Med. 8, 584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Garbie and the University of Minnesota Genomic Core for their assistance throughout the project. J.G.S. is supported by the T32HL007062-46 Hematology Research Training Program. B.S.M. is supported by the following NIH grants (CA136393, CA254849, AI161017, and AI161017). B.R.W. received support from NIH AI163731, CA237789, CA276345, the Minnesota Ovarian Cancer Alliance in 2021 and the Randy Shaver Cancer Research and Community Fund in 2022.

Author information

Authors and Affiliations

Authors

Contributions

B.R.W., M.J.J., J.G.S., N.J.S., T.H., M.C., R.S.M. and B.S.M. conceived and planned the experiments. B.R.W., M.J.J., J.G.S., N.J.S., W.S.L., A.P.D., X.Q., B.R., M.D.D. and B.W. carried out the experiments. B.R.W., M.J.J., J.G.S., T.K.S., L.J.M. and B.S.M. analysed data and interpreted the results. B.R.W., M.J.J., J.G.S. and B.S.M. wrote the manuscript. All authors provided critical feedback during the study and commented on the manuscript.

Corresponding authors

Correspondence to Beau R. Webber or Branden S. Moriarity.

Ethics declarations

Competing interests

B.R.W., R.S.M. and B.S.M. are principal investigators of Sponsored Research Agreements funded by Intima Biosciences to support this work. Patents have been filed covering the methods and approaches outlined in this work.

Peer review

Peer review information

Nature Biomedical Engineering thanks Zoltán Ivics, Zsuzsanna Izsvak, Matthew Porteus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Longer homology arms increase integration with both HMEJ or HR.

Percentage of cells expressing GFP following electroporation with Cas9 mRNA, gRNAs, and HMEJ templates with the indicated homology arm lengths. Statistical analyses were done using Two-way ANOVA (n = 3–6 independent biological donors) (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Source data

Extended Data Fig. 2 Lentivirally transduced cells have higher expression levels of CD19 CAR than non-viral engineered cells.

MFI of samples following HMEJ non-viral genome engineering or lentiviral transduction with a construct encoding CD19CAR-2A-RQR8.

Source data

Extended Data Fig. 3 HMEJ-engineered CD19 CAR T cells express similar levels of activation and exhaustion surface markers as lentivirally transduced cells.

(A) Expression of 41BB, CD25, CD69, and Ox40 in RQR8+CD4+, total CD4+, RQR8+CD8+ and total CD8+ T cell subsets following HMEJ non-viral genome engineering or lentiviral transduction with a construct encoding CD19CAR-2A-RQR8. (B) Expression of Lag3, PD1, and TIM3 in RQR8+CD4+, total CD4+, RQR8+CD8+ and total CD8+ T cell subsets following HMEJ non-viral genome engineering or lentiviral transduction with a construct encoding CD19CAR-2A-RQR8. Lack of statistically significant differences was determined by comparing TRAC, AAVS1, and pulse-only cells to Lenti cells using One-way ANOVA followed by Dunnett’s multiple comparison test.

Source data

Extended Data Fig. 4 HMEJ-engineered and lentivirally transduced CD19 CAR T cells produce cytokines in response to target cells, as measured by ICS.

Percentage of cells expressing cytokines IFNγ, TNF, and IL2 as well as a degranulation marker CD107a in CD4 (left panels) and CD8 (right panels) CD19 CAR T cells following coculture with CD19+ Raji target cells.

Source data

Extended Data Fig. 5 HMEJ-engineered and lentivirally transduced CD19 CAR T cells produce cytokines in response to target cells, as measured by Luminex.

Concentration of IFNγ, TNF, IL4, and IL5 in the supernatant of CD19 CAR T cells following co-culture with CD19+ Raji target cells. All statistical analyses were done using One-way ANOVA followed by Tukey’s multiple comparison test. (n = 6 independent biological donors) (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Source data

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Supplementary data

Source data for the supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webber, B.R., Johnson, M.J., Skeate, J.G. et al. Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-023-01157-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing