Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases

Abstract

The therapeutic benefits of many cell types involve paracrine mechanisms. Inspired by the paracrine functions of exosomes and the sustained degradation properties of microcapsules, here we report the therapeutic benefits of exosome-loaded degradable poly(lactic-co-glycolic acid) microcapsules with micrometric pores for the treatment of vitreoretinal diseases. On intravitreal injection in a mouse model of retinal ischaemia-reperfusion injury, microcapsules encapsulating mouse mesenchymal-stem-cell-derived exosomes settled in the inferior vitreous cavity, released exosomes for over one month as they underwent degradation and led to the restoration of retinal thickness to nearly that of the healthy retina. In mice and non-human primates with primed mycobacterial uveitis, intravitreally injected microcapsules loaded with exosomes from monkey regulatory T cells resulted in a substantial reduction in the levels of inflammatory cells. The exosome-encapsulating microcapsules, which can be lyophilised, may offer alternative treatment options for vitreoretinal diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction and characterization of MExoCap.
Fig. 2: Protective effects of MExo released from MExoCap in the RIRI model in vitro.
Fig. 3: Intraocular retention, distribution and biological stability of MExoCap.
Fig. 4: Protective efficacy of MExoCap in a RIRI mouse model.
Fig. 5: Anti-inflammatory efficacy of TrExoCap in a PMU mouse model.
Fig. 6: Anti-inflammatory effects of TrExoCap in a PMU non-human primate model.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The RNA-sequencing data are available from the NCBI BioProject via the accession code PRJNA1000442. The mass spectrometry and proteomics data are available from the ProteomeXchange Consortium (through the iProX partner repository) via the dataset identifier PXD044401. Source data for the figures are provided with this paper, and are also available from figshare at https://doi.org/10.6084/m9.figshare.23849181.v1.

References

  1. Berger, W., Kloeckener-Gruissem, B. & Neidhardt, J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 29, 335–375 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Chodnicki, K. et al. Stroke risk before and after central retinal artery occlusion: a population-based analysis. Ophthalmology 129, 203–208 (2022).

    Article  PubMed  Google Scholar 

  3. Russo, R. et al. Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival. Cell Death Dis. 9, 981 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shosha, E. et al. Arginase 2 promotes neurovascular degeneration during ischemia/reperfusion injury. Cell Death Dis. 7, e2483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szabadfi, K. et al. Novel neuroprotective strategies in ischemic retinal lesions. Int. J. Mol. Sci. 11, 544–561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang, Y. et al. Therapeutic targeting of retinal immune microenvironment with CSF-1 receptor antibody promotes visual function recovery after ischemic optic neuropathy. Front. Immunol. 11, 585918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stitt, A. et al. Vascular stem cells and ischaemic retinopathies. Prog. Retin. Eye Res. 30, 149–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen, Q. D. et al. Intravitreal sirolimus for the treatment of noninfectious uveitis: evolution through preclinical and clinical studies. Ophthalmology 125, 1984–1993 (2018).

    Article  PubMed  Google Scholar 

  9. Myles, M., Neumann, D. & Hill, J. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv. Drug Deliv. Rev. 57, 2063–2079 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Slabaugh, M. A., Herlihy, E., Ongchin, S. & van Gelder, R. N. Efficacy and potential complications of difluprednate use for pediatric uveitis. Am. J. Ophthalmol. 153, 932–938 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Gillies, M. C. et al. Intravitreal triamcinolone-induced elevated intraocular pressure is associated with the development of posterior subcapsular cataract. Ophthalmology 112, 139–143 (2005).

    Article  PubMed  Google Scholar 

  12. Roth, D. B. et al. Long-term incidence and timing of intraocular hypertension after intravitreal triamcinolone acetonide injection. Ophthalmology 116, 455–460 (2009).

    Article  PubMed  Google Scholar 

  13. Han, J. et al. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano 9, 2805–2819 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Romano, M., Fanelli, G., Albany, C. J., Giganti, G. & Lombardi, G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol. 10, 43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okoye, I. et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41, 89–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, L. et al. Overexpression of heme oxygenase-1 in mesenchymal stem cells augments their protection on retinal cells in vitro and attenuates retinal ischemia/reperfusion injury in vivo against oxidative stress. Stem Cells Int. 2017, 4985323 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang, X. et al. Effects of mesenchymal stem cells and their exosomes on the healing of large and refractory macular holes. Graefes Arch. Clin. Exp. Ophthalmol 256, 2041–2052 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Singh, M. S. et al. Retinal stem cell transplantation: balancing safety and potential. Prog. Retin. Eye Res. 75, 100779 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Park, S. S. et al. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog. Retin. Eye Res. 56, 148–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. He, C., Zheng, S., Luo, Y. & Wang, B. Exosome theranostics: biology and translational medicine. Theranostics 8, 237–255 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y. et al. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 15, 6917–6934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xi, X. et al. Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination. Sci. Adv. 6, eaay7735 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reinhold Samuel, E. et al. Self-healing microencapsulation of biomacromolecules without organic solvents. Angew. Chem. Int. Ed. Engl. 51, 10800–10803 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Desai Kashappa-Goud, H. et al. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J. Control. Release 165, 62–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Li, S. et al. Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury. Basic Res. Cardiol. 116, 65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y., Tang, L. & Chen, B. Effects of antioxidant gene therapy on retinal neurons and oxidative stress in a model of retinal ischemia/reperfusion. Free Radic. Biol. Med. 52, 909–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Sayyad, Z. et al. Human primary retinal cells as an in-vitro model for investigating defective signalling caused by OPTN mutants associated with glaucoma. Neurochem. Int. 148, 105075 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Mahrouf-Yorgov, M. et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 24, 1224–1238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eastlake, K. et al. Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog. Retin. Eye Res. 85, 100970 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Hu, M. et al. The effect of miRNA-modified exosomes in animal models of spinal cord injury: a meta-analysis. Front. Bioeng. Biotechnol. 9, 819651 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang, B. et al. Mucin 17 inhibits the progression of human gastric cancer by limiting inflammatory responses through a MYH9-p53-RhoA regulatory feedback loop. J. Exp. Clin. Cancer Res. 38, 283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fudalej, E. et al. Neuroprotective factors of the retina and their role in promoting survival of retinal ganglion cells: a review. Ophthalmic Res. 64, 345–355 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Sivilia, S. et al. Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat. BMC Neurosci. 10, 52 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weymouth, A. E. & Vingrys, A. J. Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog. Retin. Eye Res. 27, 1–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Chatila, T. & Williams, C. Regulatory T cells: exosomes deliver tolerance. Immunity 41, 3–5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gutowski, M., Wilson, L., van Gelder, R. & Pepple, K. In vivo bioluminescence imaging for longitudinal monitoring of inflammation in animal models of uveitis. Invest. Ophthalmol. Vis. Sci. 58, 1521–1528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jonas, J., Kreissig, I. & Degenring, R. Intravitreal triamcinolone acetonide for treatment of intraocular proliferative, exudative, and neovascular diseases. Prog. Retin. Eye Res. 24, 587–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Tian, Y. et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat. Biomed. Eng. 5, 968–982 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Pepple, K., Wilson, L. & van Gelder, R. Comparison of aqueous and vitreous lymphocyte populations from two rat models of experimental uveitis. Invest. Ophthalmol. Vis. Sci. 59, 2504–2511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, H., Tyagi, P., Kadam, R., Holden, C. & Kompella, U. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 6, 7595–7606 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Jaissle, G. B. et al. Epiretinal deposit of triamcinolone acetonide at the posterior pole after intravitreal injection. Ophthalmic Surg. Lasers Imaging 38, 238–241 (2007).

    Article  PubMed  Google Scholar 

  43. Raia Nicole, R. et al. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials 233, 119729 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y. et al. Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials. Cell Death Dis. 11, 793 (2021).

    Article  Google Scholar 

  45. Zhou, X. et al. Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery. Biomaterials 268, 120600 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Mandal, A. et al. Ocular delivery of proteins and peptides: challenges and novel formulation approaches. Adv. Drug Deliv. Rev. 126, 67–95 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jirarattanasopa, P. et al. Results of intravitreal dexamethasone implant (Ozurdex®) for retinal vascular diseases with macular edema: an observational study of real-life situations. Medicine 101, e29807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leinonen, S. et al. Fluocinolone acetonide intravitreal implant (Retisert) in the treatment of sight threatening macular oedema of juvenile idiopathic arthritis-related uveitis. Acta Ophthalmol. 96, 648–651 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, G. U. et al. Therapeutic potential of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles for the treatment of spinal cord injury. Int. J. Mol. Sci. 22, 13672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwon, H. et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat. Rev. Rheumatol. 15, 550–570 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huang, K., Ozpinar, E. W., Su, T., Tang, J. & Cheng, K. An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Sci. Transl. Med. 12, eaat9683 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xie, X. et al. Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nat. Biomed. Eng. 5, 414–428 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (T2225021 and U2001224 to W.W., 82070948 to Y. Tao, 32030062 to G.M. and 82101138 to Y. Tian), the Beijing Natural Science Foundation (JQ21027 to W.W.), the Shunyi District ‘Beijing science and technology achievements transformation coordination and service platform’ construction fund (SYGX202010 to Y. Tao) and the Beijing Hospitals Authority’s Ascent Plan (DFL20220301 to Y. Tao).

Author information

Authors and Affiliations

Authors

Contributions

W.W., Y. Tao and G.M. conceived and designed the study. H.B. and Y. Tian performed most of the experiments and analysed the data. T.Y. and H.W. assisted with microcapsule preparation. S.W., J.Z. and J.L. provided suggestions about the project design and data presentation. Y.Q. and C.P. assisted with the experiment on cynomolgus monkeys. W.W., H.B. and Y. Tian wrote the original draft manuscript, and W.W., Y. Tao and G.M. revised the manuscript.

Corresponding authors

Correspondence to Guanghui Ma, Wei Wei or Yong Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Ke Cheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Main Supplementary Information

Supplementary figures and tables.

Reporting Summary

Source data

SD for Fig. 1

Source data.

SD for Fig. 2

Source data.

SD for Fig. 3

Source data.

SD for Fig. 4

Source data.

SD for Fig. 5

Source data.

SD for Fig. 6

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, H., Tian, Y., Wang, H. et al. Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-023-01112-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research