Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells

Abstract

On-target off-tumour toxicity limits the anticancer applicability of chimaeric antigen receptor (CAR) T cells. Here we show that the tumour-targeting specificity and activity of T cells with a CAR consisting of an antibody with a lysine residue that catalytically forms a reversible covalent bond with a 1,3-diketone hapten can be regulated by the concentration of a small-molecule adapter. This adapter selectively binds to the hapten and to a chosen tumour antigen via a small-molecule binder identified via a DNA-encoded library. The adapter therefore controls the formation of a covalent bond between the catalytic antibody and the hapten, as well as the tethering of the CAR T cells to the tumour cells, and hence the cytotoxicity and specificity of the cytotoxic T cells, as we show in vitro and in mice with prostate cancer xenografts. Such small-molecule switches of T-cell cytotoxicity and specificity via an antigen-independent ‘universal’ CAR may enhance the control and safety profile of CAR-based cellular immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of a covalent CAR T cell and folate receptor adapter molecules.
Fig. 2: Design and characterization of a covalent CAR T cell and PSMA adapter molecules.
Fig. 3: In vivo activity of CovCAR T cells and DUPA-3-diketone, DUPA-4-diketone and DUPA-5-diketone conjugates in a prostate cancer xenograft model.
Fig. 4: Pharmacological control of cytokine release and CovCAR-T-cell propagation following DUPA-3-diketone adapter administration in vivo.
Fig. 5: Selection and characterization of PSMA-specific adapter molecules from DEL for covalent CAR T-cell therapy.
Fig. 6: Selection and characterization of HER2-specific adapter molecules from DEL for covalent CAR T-cell therapy.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. All data generated during the study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med. 25, 1341–1355 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Maude, S. L., Barrett, D., Teachey, D. T. & Grupp, S. A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 20, 119–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, H. et al. Management of cytokine release syndrome related to CAR-T cell therapy. Front. Med. 13, 610–617 (2019).

    Article  PubMed  Google Scholar 

  7. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma, J. S. et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc. Natl Acad. Sci. USA 113, E450–E458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Urbanska, K. et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 72, 1844–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodgers, D. T. et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc. Natl Acad. Sci. USA 113, E459–E468 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D’Aloia, M. M. et al. T lymphocytes engineered to express a CD16-chimeric antigen receptor redirect T-cell immune responses against immunoglobulin G-opsonized target cells. Cytotherapy 18, 278–290 (2016).

    Article  PubMed  Google Scholar 

  12. Raj, D. et al. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut 68, 1052–1064 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Minutolo, N. G. et al. Quantitative control of gene-engineered T-cell activity through the covalent attachment of targeting ligands to a universal immune receptor. J. Am. Chem. Soc. 142, 6554–6568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Landgraf, K. E. et al. convertibleCARs: a chimeric antigen receptor system for flexible control of activity and antigen targeting. Commun. Biol. 3, 296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park, S. et al. Direct control of CAR T cells through small molecule-regulated antibodies. Nat. Commun. 12, 710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, Y. G. et al. Regulation of CAR T cell-mediated cytokine release syndrome-like toxicity using low molecular weight adapters. Nat. Commun. 10, 2681 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cao, Y. et al. Design of switchable chimeric antigen receptor T cells targeting breast cancer. Angew. Chem. Int. Ed. Engl. 55, 7520–7524 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Favalli, N. et al. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat. Chem. 13, 540–548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, M. S. et al. Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J. Am. Chem. Soc. 137, 2832–2835 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Amatya, C. et al. Development of CAR T cells expressing a suicide gene plus a chimeric antigen receptor targeting signaling lymphocytic-activation molecule F7. Mol. Ther. 29, 702–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee, S. M. et al. A chemical switch system to modulate chimeric antigen receptor T cell activity through proteolysis-targeting chimaera technology. ACS Synth. Biol. 9, 987–992 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Mestermann, K. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci. Transl. Med. 11, eaau5907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cao, W. et al. A reversible chemogenetic switch for chimeric antigen receptor T cells. Angew. Chem. Int. Ed. Engl. 61, e202109550 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Labanieh, L. et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 185, 1745–1763.e22 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi, J. et al. Chemically programmable and switchable CAR-T therapy. Angew. Chem. Int. Ed. Engl. 59, 12178–12185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamada, K. et al. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res. 18, 6436–6445 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, Y. G. et al. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumors. Cancer Res. 79, 387–396 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Schneider, P. et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 19, 353–364 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Lim, K. S. et al. Machine learning on DNA-encoded library count data using an uncertainty-aware probabilistic loss function. J. Chem. Inf. Model. 62, 2316–2331 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Rader, C. et al. A humanized aldolase antibody for selective chemotherapy and adaptor immunotherapy. J. Mol. Biol. 332, 889–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Shabat, D. et al. In vivo activity in a catalytic antibody-prodrug system: antibody catalyzed etoposide prodrug activation for selective chemotherapy. Proc. Natl Acad. Sci. USA 98, 7528–7533 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nanna, A. R. et al. Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nat. Commun. 8, 1112 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rader, C., Sinha, S. C., Popkov, M., Lerner, R. A. & Barbas, C. F. III Chemically programmed monoclonal antibodies for cancer therapy: adaptor immunotherapy based on a covalent antibody catalyst. Proc. Natl Acad. Sci. USA 100, 5396–5400 (2003).

  36. Barbas, C. F. III et al. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278, 2085–2092 (1997).

  37. Gavrilyuk, J. I., Wuellner, U. & Barbas, C. F. III Beta-lactam-based approach for the chemical programming of aldolase antibody 38C2. Bioorg. Med. Chem. Lett. 19, 1421–1424 (2009).

  38. Wagner, J., Lerner, R. A. & Barbas, C. F. III Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science 270, 1797–1800 (1995).

  39. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goodnow, R. A. Jr, Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Bassi, G. et al. A single-stranded DNA-encoded chemical library based on a stereoisomeric scaffold enables ligand discovery by modular assembly of building blocks. Adv. Sci. 7, 2001970 (2020).

    Article  CAS  Google Scholar 

  42. Dumelin, C. E. et al. A portable albumin binder from a DNA-encoded chemical library. Angew. Chem. Int. Ed. Engl. 47, 3196–3201 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Melkko, S., Zhang, Y., Dumelin, C. E., Scheuermann, J. & Neri, D. Isolation of high-affinity trypsin inhibitors from a DNA-encoded chemical library. Angew. Chem. Int. Ed. Engl. 46, 4671–4674 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Harris, P. A. et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem. 59, 2163–2178 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, R. K. Y. et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545, 112–115 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Ahn, S. et al. Allosteric ‘beta-blocker’ isolated from a DNA-encoded small molecule library. Proc. Natl Acad. Sci. USA 114, 1708–1713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Catalano, M. et al. Discovery, affinity maturation and multimerization of small molecule ligands against human tyrosinase and tyrosinase-related protein 1. RSC Med. Chem. 12, 363–369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Oehler, S. et al. Affinity selections of DNA-encoded chemical libraries on carbonic anhydrase IX-expressing tumor cells reveal a dependence on ligand valence. Chemistry 27, 8985–8993 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Whitlow, M. et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 6, 989–995 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Roy, A. G. et al. Folate receptor beta as a direct and indirect target for antibody-based cancer immunotherapy. Int. J. Mol. Sci. 22, 5572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu, Y. J. et al. Preclinical evaluation of bispecific adaptor molecule controlled folate receptor CAR-T cell therapy with special focus on pediatric malignancies. Front. Oncol. 9, 151 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xia, W. & Low, P. S. Folate-targeted therapies for cancer. J. Med. Chem. 53, 6811–6824 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Basal, E. et al. Functional folate receptor alpha is elevated in the blood of ovarian cancer patients. PLoS ONE 4, e6292 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cheung, A. et al. Targeting folate receptor alpha for cancer treatment. Oncotarget 7, 52553–52574 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Elnakat, H. & Ratnam, M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv. Drug Deliv. Rev. 56, 1067–1084 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Lynn, R. C. et al. Targeting of folate receptor beta on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood 125, 3466–3476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kurahara, H. et al. M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas 42, 155–159 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Song, D. G. et al. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 71, 4617–4627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu, X. J. et al. Multiparameter comparative analysis reveals differential impacts of various cytokines on CAR T cell phenotype and function ex vivo and in vivo. Oncotarget 7, 82354–82368 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Song, D. G. et al. Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. J. Hematol. Oncol. 9, 56 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim, M. et al. Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for the treatment of gastric cancer. PLoS ONE 13, e0198347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vaughan, T. J. et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  64. Schulke, N. et al. The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc. Natl Acad. Sci. USA 100, 12590–12595 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Aluicio-Sarduy, E. et al. Establishing radiolanthanum chemistry for targeted nuclear medicine applications. Chemistry 26, 1238–1242 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peng, Z. H., Sima, M., Salama, M. E., Kopeckova, P. & Kopecek, J. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer. J. Drug Target. 21, 968–980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Csizmar, C. M. et al. Multivalent ligand binding to cell membrane antigens: defining the interplay of affinity, valency, and expression density. J. Am. Chem. Soc. 141, 251–261 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Greenman, R. et al. Shaping functional avidity of CAR T cells: affinity, avidity, and antigen density that regulate response. Mol. Cancer Ther. 20, 872–884 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Ruffo, E. et al. Post-translational covalent assembly of CAR and synNotch receptors for programmable antigen targeting. Nat. Commun. 14, 2463 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cazaux, M. et al. Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. J. Exp. Med. 216, 1038–1049 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mahadeo, K. M. et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat. Rev. Clin. Oncol. 16, 45–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Leung, W. H. et al. Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization. JCI Insight 5, e124430 (2019).

    Article  PubMed  Google Scholar 

  76. Duong, M. T. et al. Two-dimensional regulation of CAR-T cell therapy with orthogonal switches. Mol. Ther. Oncolytics 12, 124–137 (2019).

    Article  PubMed  Google Scholar 

  77. Zhou, X. et al. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood 125, 4103–4113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Juillerat, A. et al. Modulation of chimeric antigen receptor surface expression by a small molecule switch. BMC Biotechnol. 19, 44 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mohammad, N. S., Nazli, R., Zafar, H. & Fatima, S. Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: a randomized clinical trial. Pak. J. Med. Sci. 38, 219–226 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Leamon, C. P. et al. Impact of high and low folate diets on tissue folate receptor levels and antitumor responses toward folate-drug conjugates. J. Pharmacol. Exp. Ther. 327, 918–925 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Sinha, S. C., Das, S., Li, L. S., Lerner, R. A. & Barbas, C. F. III Preparation of integrin alpha(v)beta3-targeting Ab 38C2 constructs. Nat. Protoc. 2, 449–456 (2007).

Download references

Acknowledgements

We thank N. Lerner and I. A. Wilson for help with the preparation of the manuscript. This work was supported in part by a grant from the JPB Foundation to R.A.L. A.G.G. was personally supported by grant no. 17-74-30019. Open-access funding was provided by Scripps Research.

Author information

Authors and Affiliations

Authors

Contributions

A.V.S, J.X., Q.Z., Z.S., W.S., G.S., L.D., D.Z., R.K., X.F., Y.Z. and T.Q. performed experiments, analysed and interpreted data; L.K., R.S., P.B., A.G.G., D.B. and D.N. analysed and interpreted data and revised the manuscript; and A.V.S., J.X., R.D.K. and R.A.L. designed the research, analysed and interpreted data and wrote the paper. C.R. analysed and interpreted data, and revised the manuscript.

Corresponding authors

Correspondence to Alexey V. Stepanov or Roger D. Kornberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effect of folate-diketone concentration on cell lysis and cytokine release of acute monocytic leukemia and T cell leukemia by the CovCAR T cells in vitro.

a, Comparison of FOLR1 and FOLR2 expression by THP-1, THP-1 FOLR1, and THP-1 FOLR2 cells. Open histogram: unstained cells; gray histogram: isotype control; red: folate receptor. b, THP-1 and THP-1 FOLR2 cells were incubated with conventional FOLR2-specific CAR-T cells (m909h-CAR) or in the presence of CovCAR T cells plus different concentrations of folate-diketone prior to analysis of tumor cell lysis (effector:tumour cell ratio 2:1). c, THP-1, THP-1 FOLR1 and THP-1 FOLR2 cells were incubated in the presence of CovCAR T cells plus different concentrations of folate-diketone prior to analysis of tumor cell lysis (effector:tumour cell ratio 5:1). d, CovCAR T cells release IL-2 cytokine in the presence of acute monocytic leukemia cells expressing the folate receptor and folate-diketone in a dose-dependent manner (effector:tumour cell ratio 5:1). Data represent mean ± s.d., n = 4.

Extended Data Fig. 2 In vivo activity of CovCAR T cells and constant dosage of DUPA-3-diketone injections in a prostate cancer xenograft model.

a NSG mice were implanted s.c. with 1 × 106 PC3-PSMA ffLuc cells. On day 3 after tumor inoculation 10 × 106 of CovCAR-T cells with transduction efficacy of 68% were infused i.v. into animals from all experimental groups. Mice were then injected i.v. with either PBS or DUPA-3-diketone (500 nmol/kg) on day 3, 5, 7, 9, 11, 13, 15, 17. b Representative IVIS images of the PC3-PSMA ffLuc tumors implanted mice treated with CovCAR T cells and PBS or DUPA-3-diketone. c Survival plots for animals from experimental and control groups. d Quantified tumor burden (as average radiance from luciferase activity per mouse) from (B) for the 5–44 day period. e Individual animal tumor growth kinetics of mice from control and treated groups. Overall survival curves were plotted using the Kaplan-Meier method and compared using the log-rank (Mantel-Cox) test. Statistical significance: *p < 0.05.

Source data

Supplementary information

Supplementary Information

Supplementary figures and methods.

Reporting Summary

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A.V., Xie, J., Zhu, Q. et al. Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-023-01102-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer