Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards multifunctional robotic pills

Abstract

Robotic pills leverage the advantages of oral pharmaceutical formulations—in particular, convenient encapsulation, high loading capacity, ease of manufacturing and high patient compliance—as well as the multifunctionality, increasing miniaturization and sophistication of microrobotic systems. In this Perspective, we provide an overview of major innovations in the development of robotic pills—specifically, oral pills embedded with robotic capabilities based on microneedles, microinjectors, microstirrers or microrockets—summarize current progress and applicational gaps of the technology, and discuss its prospects. We argue that the integration of multiple microrobotic functions within oral delivery systems alongside accurate control of the release characteristics of their payload provides a basis for realizing sophisticated multifunctional robotic pills that operate as closed-loop systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microrobotic systems can be incorporated into pharmaceutical pills.
Fig. 2: Pill-embedded microrobots for active drug delivery.
Fig. 3: Pill-embedded synthetic microrobots for enhanced drug penetration and bioavailability.
Fig. 4: Devices for oral delivery with extended gastric retention.
Fig. 5: Prospects of the integration of microrobots into oral pills.

Similar content being viewed by others

References

  1. Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

    Google Scholar 

  2. Wang, J. Nanomachines: Fundamentals and Applications (Wiley-VCH, 2013).

  3. Wang, H. & Pumera, M. Fabrication of micro/nanoscale motors. Chem. Rev. 115, 8704–8735 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Peng, F., Tu, Y. & Wilson, D. A. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289–5310 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Peyer, K. E., Zhang, L. & Nelson, B. J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5, 1259–1272 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Soto, F. et al. Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. de Ávila, B. E.-F. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017).

  8. Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, B., Kostarelos, K., Nelson, B. J. & Zhang, L. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33, 2002047 (2021).

    Article  CAS  Google Scholar 

  10. Walker, D., Käsdorf, B. T., Jeong, H.-H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu, Z. et al. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52, 7000–7003 (2013).

    Article  CAS  Google Scholar 

  12. Breger, J. C. et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7, 3398–3405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mushtaq, F. et al. Magnetoelectrically driven catalytic degradation of organics. Adv. Mater. 31, 1901378 (2019).

    Article  Google Scholar 

  14. Karshalev, E. et al. Micromotor pills as a dynamic oral delivery platform. ACS Nano 12, 8397–8405 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Mundaca-Uribe, R. et al. Zinc microrocket pills: fabrication and characterization toward active oral delivery. Adv. Healthc. Mater. 9, 2000900 (2020).

    Article  CAS  Google Scholar 

  16. Liu, K. et al. Micromotor based mini-tablet for oral delivery of insulin. ACS Nano 17, 300–311 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Mohammed, S. & Alqahtani, M. K. Mohammad A. Alsenaidy & Muhammad Z. Ahmad. Advances in Oral Drug Delivery. Front. Pharmacol. 19, 618411 (2021).

  18. Ingersoll, K. S. & Cohen, J. The impact of medication regimen factors on adherence to chronic treatment: a review of literature. J. Behav. Med. 31, 213–224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Homayun, B., Lin, X. & Choi, H.-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 11, 129 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waterman, K. C. et al. Osmotic capsules: a universal oral, controlled-release drug delivery dosage form. J. Control. Release 152, 264–269 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Arora, S., Ali, J., Ahuja, A., Khar, R. K. & Baboota, S. Floating drug delivery systems: a review. AAPS PharmSciTech 6, E372–E390 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kirtane, A. R. et al. Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy. Nat. Commun. 9, 2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, J. et al. Novel nanomicelles based on rebaudioside A: a potential nanoplatform for oral delivery of honokiol with enhanced oral bioavailability and antitumor activity. Int. J. Pharm. 590, 119899 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Sze, L. P. et al. Oral delivery of paclitaxel by polymeric micelles: a comparison of different block length on uptake, permeability and oral bioavailability. Colloids Surf. B 184, 110554 (2019).

    Article  CAS  Google Scholar 

  26. Siu FYK, Y. S., Lin, H. & Li, S. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: enhanced bioavailability and in vitro anti-inflammatory activity. Int. J. Nanomed. 13, 4133–4144 (2018).

    Article  Google Scholar 

  27. Zhu, Y. et al. Nanostructured lipid carriers as oral delivery systems for improving oral bioavailability of nintedanib by promoting intestinal absorption. Int. J. Pharm. 586, 119569 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Mundaca-Uribe, R. et al. A microstirring pill enhances bioavailability of orally administered drugs. Adv. Sci. 8, 2100389 (2021).

    Article  CAS  Google Scholar 

  29. Chen, W. et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci. Adv. 8, eabk1792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X., Chen, G., Fu, X., Wang, Y. & Zhao, Y. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv. Mater. 33, 2104932 (2021).

    Article  CAS  Google Scholar 

  31. Abramson, A. et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter 5, 975–987 (2022).

    Article  CAS  Google Scholar 

  32. Scudellari, M. Shot to the gut: “robotic” pill sails through human safety study. IEEE Spectrum (14 March 2019).

  33. Yu, M. M2A™ capsule endoscopy. A breakthrough diagnostic tool for small intestine imaging. Gastroenterol. Nurs. 25, 24–27 (2002).

    Article  PubMed  Google Scholar 

  34. Pandolfino, J. E. Bravo capsule pH monitoring. Am. J. Gastroenterol. 100, 8–10 (2005).

    Article  PubMed  Google Scholar 

  35. Min, J., Yang, Y., Wu, Z. & Gao, W. Robotics in the Gut. Adv. Ther. 3, 1900125 (2020).

    Article  Google Scholar 

  36. Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8, 531–554 (2013).

    Article  CAS  Google Scholar 

  37. Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Wei, X. et al. Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 19, 1914–1921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hou, K. et al. A multifunctional magnetic red blood cell-mimetic micromotor for drug delivery and image-guided therapy. ACS Appl. Mater. Interfaces 14, 3825–3837 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Hortelao, A. C. et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6, eabd2823 (2021).

    Article  PubMed  Google Scholar 

  41. Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Karshalev, E. et al. Micromotors for active delivery of minerals toward the treatment of iron deficiency anemia. Nano Lett. 19, 7816–7826 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, J., Rozen, I. & Wang, J. Rocket science at the nanoscale. ACS Nano 10, 5619–5634 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, Z. et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun, L. et al. Biohybrid robotics with living cell actuation. Chem. Soc. Rev. 49, 4043–4069 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, F. et al. ACE2 receptor-modified algae-based microrobot for removal of SARS-CoV-2 in wastewater. J. Am. Chem. Soc. 143, 12194–12201 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Rajabasadi, F. et al. Multifunctional 4D-printed sperm-hybrid microcarriers for assisted reproduction. Adv. Mater. 34, 2204257 (2022).

    Article  CAS  Google Scholar 

  48. Xu, H., Medina-Sánchez, M., Maitz, M. F., Werner, C. & Schmidt, O. G. Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14, 2982–2993 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Ricotti, L. et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2, eaaq0495 (2017).

    Article  PubMed  Google Scholar 

  50. Xu, H. et al. Human spermbots for patient-representative 3D ovarian cancer cell treatment. Nanoscale 12, 20467–20481 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, F. et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Sci. Robot. 7, eabo4160 (2022).

    Article  PubMed  Google Scholar 

  52. Katzung, B. G. (ed.) Basic & Clinical Pharmacology, 14th edn (McGraw Hill, 2017).

  53. Parmar, J., Vilela, D., Villa, K., Wang, J. & Sánchez, S. Micro- and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140, 9317–9331 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Soler, L., Magdanz, V., Fomin, V. M., Sanchez, S. & Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 7, 9611–9620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Orozco, J., Mercante, L. A., Pol, R. & Merkoçi, A. Graphene-based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 4, 3371–3378 (2016).

    Article  CAS  Google Scholar 

  56. Mundaca-Uribe, R. et al. A microstirring oral pill for improving the glucose-lowering effect of metformin. ACS Nano 17, 9272–9279 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Srinivasan, S. S. et al. RoboCap: robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract. Sci. Robot. 7, eabp9066 (2022).

    Article  PubMed  Google Scholar 

  58. Traverso, G. et al. Microneedles for drug delivery via the gastrointestinal tract. J. Pharm. Sci. 104, 362–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Abramson, A. et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat. Med. 25, 1512–1518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abramson, A. et al. Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat. Biotech. 40, 103–109 (2022).

    Article  CAS  Google Scholar 

  61. Kriegel, C., Attarwala, H. & Amiji, M. Multi-compartmental oral delivery systems for nucleic acid therapy in the gastrointestinal tract. Adv. Drug Deliv. Rev. 65, 891–901 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Elzatahry, A. A., Eldin, M. S. M., Soliman, E. A. & Hassan, E. A. Evaluation of alginate–chitosan bioadhesive beads as a drug delivery system for the controlled release of theophylline. J. Appl. Polym. Sci. 111, 2452–2459 (2009).

    Article  CAS  Google Scholar 

  63. Guan, J. et al. A novel gastric-resident osmotic pump tablet: in vitro and in vivo evaluation. Int. J. Pharm. 383, 30–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, J. et al. Triggerable tough hydrogels for gastric resident dosage forms. Nat. Commun. 8, 124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu, X. et al. Ingestible hydrogel device. Nat. Commun. 10, 493 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotech. 11, 941–947 (2016).

    Article  CAS  Google Scholar 

  67. Maric, T. et al. Self-propelled Janus micromotors for pH-responsive release of small molecule drug. Appl. Mater. Today 27, 101418 (2022).

    Article  Google Scholar 

  68. Dhalla, A. K. et al. A robotic pill for oral delivery of biotherapeutics: safety, tolerability, and performance in healthy subjects. Drug Deliv. Transl. Res. 12, 294–305 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Jin, Q., Yang, Y., Jackson, J. A., Yoon, C. & Gracias, D. H. Untethered single cell grippers for active biopsy. Nano Lett. 20, 5383–5390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gultepe, E. et al. Biologic tissue sampling with untethered microgrippers. Gastroenterology 144, 691–693 (2013).

    Article  PubMed  Google Scholar 

  71. Beardslee, L. A. et al. Ingestible sensors and sensing systems for minimally invasive diagnosis and monitoring: the next frontier in minimally invasive screening. ACS Sens. 5, 891–910 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

    Article  Google Scholar 

  73. Nejati, S. et al. Small intestinal sampling capsule for inflammatory bowel disease type detection and management. Lab Chip 22, 57–70 (2022).

    Article  CAS  Google Scholar 

  74. Soto, F. et al. Robotic pill for biomarker and fluid sampling in the gastrointestinal tract. Adv. Intell. Syst. 4, 2200030 (2022).

    Article  Google Scholar 

  75. van der Merwe, J., Steenekamp, J., Steyn, D. & Hamman, J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics 12, 393 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Velligan, D. I. & Kamil, S. H. Enhancing patient adherence: introducing smart pill devices. Ther. Deliv. 5, 611–613 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Hafezi, H. et al. An ingestible sensor for measuring medication adherence. IEEE Trans. Biomed. Eng. 62, 99–109 (2015).

    Article  PubMed  Google Scholar 

  78. De la Paz, E. et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Article  Google Scholar 

  80. Adler, S. N. & Metzger, Y. C. PillCam COLON capsule endoscopy: recent advances and new insights. Ther. Adv. Gastroenterol. 4, 265–268 (2011).

    Article  Google Scholar 

  81. Jones, A. A. D. III, Mi, G. & Webster, T. J. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol. 37, 117–120 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health, under award number R21AI159492, and by the Defense Threat Reduction Agency Joint Science and Technology Office for Chemical and Biological Defense, under award number HDTRA1‐21‐1‐0010.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the literature and to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Liangfang Zhang or Joseph Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Samuel Sanchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundaca-Uribe, R., Askarinam, N., Fang, R.H. et al. Towards multifunctional robotic pills. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-023-01090-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing