Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A wireless patch for the monitoring of C-reactive protein in sweat

Abstract

The quantification of protein biomarkers in blood at picomolar-level sensitivity requires labour-intensive incubation and washing steps. Sensing proteins in sweat, which would allow for point-of-care monitoring, is hindered by the typically large interpersonal and intrapersonal variations in its composition. Here we report the design and performance of a wearable and wireless patch for the real-time electrochemical detection of the inflammatory biomarker C-reactive (CRP) protein in sweat. The device integrates iontophoretic sweat extraction, microfluidic channels for sweat sampling and for reagent routing and replacement, and a graphene-based sensor array for quantifying CRP (via an electrode functionalized with anti-CRP capture antibodies-conjugated gold nanoparticles), ionic strength, pH and temperature for the real-time calibration of the CRP sensor. In patients with chronic obstructive pulmonary disease, with active or past infections or who had heart failure, the elevated concentrations of CRP measured via the patch correlated well with the protein’s levels in serum. Wearable biosensors for the real-time sensitive analysis of inflammatory proteins in sweat may facilitate the management of chronic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wearable electrochemical biosensor for the automatic, non-invasive and wireless monitoring of inflammation.
Fig. 2: Materials and electrochemical characterizations of the LEG–AuNPs CRP sensor.
Fig. 3: Evaluation of sweat CRP for the non-invasive monitoring of systemic inflammation in healthy and patient populations.
Fig. 4: Multiplexed microfluidic patch for automatic immunosensing.
Fig. 5: On-body evaluation of the multiplexed wearable patch towards non-invasive automatic inflammation monitoring.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for Figs. 3 and 5 are provided with this paper. All raw and analysed datasets generated during the study are available from the corresponding author on request.

References

  1. The top 10 causes of death. World Health Organization https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (2020).

  2. Mannino, D. M. et al. Economic burden of COPD in the presence of comorbidities. Chest 148, 138–150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashley, N. T., Weil, Z. M. & Nelson, R. J. Inflammation: mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 43, 385–406 (2012).

    Article  Google Scholar 

  5. Schett, G. & Neurath, M. F. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat. Commun. 9, 3261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wylezinski, L. S., Gray, J. D., Polk, J. B., Harmata, A. J. & Spurlock, C. F. Illuminating an invisible epidemic: a systemic review of the clinical and economic benefits of early diagnosis and treatment in inflammatory disease and related syndromes. J. Clin. Med. 8, 493 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Emerging Risk Factors Collaboration et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

    Article  Google Scholar 

  9. Ridker, P. M. A test in context: high-sensitivity C-reactive protein. J. Am. Coll. Cardiol. 67, 712–723 (2016).

    Article  PubMed  Google Scholar 

  10. Proctor, M. J. et al. Systemic inflammation predicts all-cause mortality: a Glasgow inflammation outcome study. PLoS ONE 10, e0116206 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Prins, B. P. et al. Investigating the causal relationship of C-reactive protein with 32 complex somatic and psychiatric outcomes: a large-scale cross-consortium Mendelian randomization study. PLoS Med. 13, e1001976 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Balayan, S., Chauhan, N., Rosario, W. & Jain, U. Biosensor development for C-reactive protein detection: a review. Appl. Surf. Sci. Adv. 12, 100343 (2022).

    Article  Google Scholar 

  13. Young, B., Gleeson, M. & Cripps, A. W. C-reactive protein: a critical review. Pathology 23, 118–124 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Lobo, S. M. Sequential C-reactive protein measurements in patients with serious infections: does it help? Crit. Care 16, 130 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guo, S., Mao, X. & Liang, M. The moderate predictive value of serial serum CRP and PCT levels for the prognosis of hospitalized community-acquired pneumonia. Respir. Res. 19, 193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Ray, T. R. et al. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. 13, eabd8109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechol. 11, 566–572 (2016).

    Article  Google Scholar 

  21. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ates, H. C. et al. On-site therapeutic drug monitoring. Trends Biotechnol. 38, 1262–1277 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    Article  Google Scholar 

  24. Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tu, J., Torrente‐Rodríguez, R. M., Wang, M. & Gao, W. The era of digital health: a review of portable and wearable affinity biosensors. Adv. Funct. Mater. 30, 1906713 (2020).

    Article  CAS  Google Scholar 

  26. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bandodkar, A. J., Jeang, W. J., Ghaffari, R. & Rogers, J. A. Wearable sensors for biochemical sweat analysis. Annual Rev. Anal. Chem. 12, 1–22 (2019).

    Article  Google Scholar 

  32. Xuan, X., Pérez-Ràfols, C., Chen, C., Cuartero, M. & Crespo, G. A. Lactate biosensing for reliable on-body sweat analysis. ACS Sens. 6, 2763–2771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pirovano, P. et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219, 121145 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Cordero, E. et al. Three-dimensional integrated ultra-low-volume passive microfluidics with ion-sensitive field-effect transistors for multiparameter wearable sweat analyzers. ACS Nano 12, 12646–12656 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. He, W. et al. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 5, eaax0649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi, D.-H., Kitchen, G. B., Jennings, M. T., Cutting, G. R. & Searson, P. C. Out-of-clinic measurement of sweat chloride using a wearable sensor during low-intensity exercise. npj Digit. Med. 3, 49 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhong, B., Jiang, K., Wang, L. & Shen, G. Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 9, 2103257 (2022).

    Article  CAS  Google Scholar 

  38. Lin, H. et al. A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis. Nat. Commun. 11, 4405 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saldanha, D. J., Cai, A. & Dorval Courchesne, N.-M. The evolving role of proteins in wearable sweat biosensors. ACS Biomater. Sci. Eng. 9, 2020–2047 (2021).

    Article  PubMed  Google Scholar 

  40. Mishra, R. K. et al. Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J. Am. Chem. Soc. 142, 5991–5995 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. An, J. E. et al. Wearable cortisol aptasensor for simple and rapid real-time monitoring. ACS Sens. 7, 99–108 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jagannath, B. et al. Novel approach to track the lifecycle of inflammation from chemokine expression to inflammatory proteins in sweat using electrochemical biosensor. Adv. Mater. Technol. 7, 2101356 (2022).

    Article  CAS  Google Scholar 

  45. Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barkas, F., Liberopoulos, E., Kei, A. & Elisaf, M. Electrolyte and acid-base disorders in inflammatory bowel disease. Ann. Gastroenterol. 26, 23–28 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Majewski, S. et al. Skin condition and its relationship to systemic inflammation in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 12, 2407–2415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, X. et al. Graphene uniformly decorated with gold nanodots: in situ synthesis, enhanced dispersibility and applications. J. Mater. Chem. 21, 8096–8103 (2011).

    Article  CAS  Google Scholar 

  49. Yu, Y. et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 7, eabn0495 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Harshman, S. W. et al. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: a pilot investigation. PLoS ONE 13, e0203133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pinto-Plata, V. M. et al. C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax 61, 23–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Retamales, I. et al. Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am. J. Respir. Crit. Care Med. 164, 469–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Tonstad, S. & Cowan, J. L. C-reactive protein as a predictor of disease in smokers and former smokers: a review. Int. J. Clin. Pract. 63, 1634–1641 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Simmonds, S. J., Cuijpers, I., Heymans, S. & Jones, E. A. V. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells 9, 242 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lakhani, I. et al. Diagnostic and prognostic value of serum C-reactive protein in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Heart Fail. Rev. 26, 1141–1150 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Butler, J. et al. Clinical and economic burden of chronic heart failure and reduced ejection fraction following a worsening heart failure event. Adv. Ther. 37, 4015–4032 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Albar, Z. et al. Inflammatory markers and risk of heart failure with reduced to preserved ejection fraction. Am. J. Cardiol. 167, 68–75 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Xin, Y., Zhou, J., Nesser, H. & Lubineau, G. Design strategies for strain‐insensitive wearable healthcare sensors and perspective based on the Seebeck coefficient. Adv. Electron. Mater. 9, 2200534 (2023).

    Article  CAS  Google Scholar 

  59. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Torrente-Rodríguez, R. M. et al. SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 3, 1981–1998 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhuang, G., Katakura, Y., Omasa, T., Kishimoto, M. & Suga, K.-I. Measurement of association rate constant of antibody-antigen interaction in solution based on enzyme-linked immunosorbent assay. J. Biosci. Bioeng. 92, 330–336 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the American Heart Association grant 19TPA34850157, National Institutes of Health (NIH) grants R01HL155815 and R21DK13266, National Science Foundation grant 2145802, Office of Naval Research grants N00014-21-1-2483 and N00014-21-1-2845, High Impact Pilot Research Award T31IP1666 from the Tobacco-Related Disease Research Program, Sloan Research Fellowship and the Technology Ventures Internal Project Fund at Cedars-Sinai. J.T. was supported by the National Science Scholarship from the Agency of Science Technology and Research (A*STAR) Singapore. E.D. was supported by NIH grant T32EB027629. We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. We acknowledge support from the Beckman Institute of Caltech to the Molecular Materials Research Center and Jake Evans for help with XPS. The Proteome Exploration Laboratory is supported by the Beckman Institute and NIH grant 1S10OD02001301. We thank G. R. Rossman for assistance in Raman spectroscopy. We also thank E. Bayoumi, E. Pascual and P.-E. Chen at Cedars-Sinai Medical Center for their assistance in participant recruitment. We thank R. M. Torrente-Rodríguez for constructive feedback on manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

W.G. and J.T. initiated the concept and designed the overall studies. W.G. supervised the work. J.T., J. Min and Y.S. led the experiments and collected the overall data. C.X., J.L., T.-Y.W., E.D. and T.-F.C. contributed to sensor characterization and validation. J. Moore, J.H., E.H., T.P., P.C., J.J.H. and H.B.R. contributed to the design of the human trials and to the system’s evaluation in the participants. All authors contributed to data analysis and provided feedback on the paper.

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Nae-Eung Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures, tables and references.

Reporting Summary

Supplementary Video 1

Wearable nanobiosensor for automatic, non-invasive and wireless inflammation monitoring.

Supplementary Video 2

Laboratory flow test illustrating the automatic microfluidic immunosensing.

Supplementary Video 3

On-body flow test showing the delivery and refreshment of black dye in the detection reservoir after 5 min of iontophoretic sweat induction.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Min, J., Song, Y. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng 7, 1293–1306 (2023). https://doi.org/10.1038/s41551-023-01059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-023-01059-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing