Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges in the clinical advancement of cell therapies for Parkinson’s disease

Abstract

Cell therapies as potential treatments for Parkinson’s disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson’s disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Putative mechanism of action of parthenogenetic neural stem cells for the treatment of PD.
Fig. 2: Preclinical benchmarks of efficacy and safety required for stem-cell therapies for PD that are intended for use in clinical trials.
Fig. 3: Protocol for the differentiation of hESCs into dopaminergic progenitors.

Similar content being viewed by others

References

  1. Group, P. S. Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. JAMA 284, 1931–1938 (2000).

    Article  Google Scholar 

  2. Marsden, C. D. & Parkes, J. D. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 309, 345–349 (1977).

    Article  Google Scholar 

  3. Wei, Y.-J. et al. Antiparkinson drug use and adherence in medicare part D beneficiaries with Parkinson’s disease. Clin. Ther. 35, 1513–1525.e1 (2013).

    Article  PubMed  Google Scholar 

  4. Straka, I. et al. Adherence to pharmacotherapy in patients with Parkinson’s disease taking three and more daily doses of medication. Front. Neurol. 10, 799 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parkinson’s Disease: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care (Royal College of Physicians of London, 2006).

  6. Marks, W. J. Jr et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype-2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 7, 400–408 (2008).

    Article  PubMed  Google Scholar 

  7. Marks, W. J. Jr et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Warren Olanow, C. et al. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann. Neurol. 78, 248–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Games, D. et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J. Neurosci. 34, 9441–9454 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schenk, D. B. et al. First-in-human assessment of PRX002, an anti–α-synuclein monoclonal antibody, in healthy volunteers. Mov. Disord. 32, 211–218 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Jankovic, J. et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti–α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical Trial. JAMA Neurol. 75, 1206–1214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brys, M. et al. Randomized phase I clinical trial of anti-α-synuclein antibody BIIB054. Mov. Disord. 34, 1154–1163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandler, M. et al. Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol. 127, 861–879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elkouzi, A., Vedam-Mai, V., Eisinger, R. S. & Okun, M. S. Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nat. Rev. Neurol. 15, 204–223 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mittermeyer, G. et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum. Gene Ther. 23, 377–381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muramatsu, S. et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol. Ther. 18, 1731–1735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eberling, J. L. et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70, 1980 LP–1981983 (2008).

    Article  Google Scholar 

  18. Palfi, S. et al. Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum. Gene Ther. Clin. Dev. 29, 148–155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cochen, V. et al. Transplantation in Parkinson’s disease: PET changes correlate with the amount of grafted tissue. Mov. Disord. 18, 928–932 (2003).

    Article  PubMed  Google Scholar 

  20. Brundin, P. et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain 123, 1380–1390 (2000).

    Article  PubMed  Google Scholar 

  21. Wenning, G. K. et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann. Neurol. 42, 95–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 54, 403–414 (2003).

    Article  PubMed  Google Scholar 

  23. Ma, Y. et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18)F-FDOPA PET outcomes. J. Nucl. Med. 51, 7–15 (2010).

    Article  PubMed  Google Scholar 

  24. Freeman, T. B. et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann. Neurol. 38, 379–388 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Hagell, P. et al. Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 122, 1121–1132 (1999).

    Article  PubMed  Google Scholar 

  26. Hauser, R. A. et al. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol. 56, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247, 574–577 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Lindvall, O. et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann. Neurol. 35, 172–180 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Peschanski, M. et al. Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 117, 487–499 (1994).

    Article  PubMed  Google Scholar 

  30. Remy, P. et al. Clinical correlates of {18F}fluorodopa uptake in five grafted Parkinsonian patients. Ann. Neurol. 38, 580–588 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Sawle, G. V. et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: PET {18F}6-L-fluorodopa studies in two patients with putaminal implants. Ann. Neurol. 31, 166–173 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Kordower, J. H. et al. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann. Neurol. 81, 46–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Li, J.-Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hallett, P. J. et al. Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep. 7, 1755–1761 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Politis, M. et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci. Transl. Med. 2, 38ra46 (2010).

    Article  PubMed  Google Scholar 

  37. Barone, P. et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov. Disord. 24, 1641–1649 (2009).

    Article  PubMed  Google Scholar 

  38. Wüllner, U. et al. Autonomic dysfunction in 3414 Parkinson’s disease patients enrolled in the German Network on Parkinson’s disease (KNP e.V.): the effect of ageing. Eur. J. Neurol. 14, 1405–1408 (2007).

    Article  PubMed  Google Scholar 

  39. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  40. Braak, H., de Vos, R. A. I., Bohl, J. & Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Politis, M. et al. Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci. Transl. Med. 4, 128ra41 (2012).

    Article  PubMed  Google Scholar 

  42. Haikal, C., Chen, Q.-Q. & Li, J.-Y. Microbiome changes: an indicator of Parkinson’s disease? Transl. Neurodegener. 8, 38 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaye, J., Gage, H., Kimber, A., Storey, L. & Trend, P. Excess burden of constipation in Parkinson’s disease: a pilot study. Mov. Disord. 21, 1270–1273 (2006).

    Article  PubMed  Google Scholar 

  44. Siddiqui, M. F., Rast, S., Lynn, M. J., Auchus, A. P. & Pfeiffer, R. F. Autonomic dysfunction in Parkinson’s disease: a comprehensive symptom survey. Parkinsonism Relat. Disord. 8, 277–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Stocchi, F. et al. Anorectal function in multiple system atrophy and Parkinson’s disease. Mov. Disord. 15, 71–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Abbott, R. D. et al. Bowel movement frequency in late-life and incidental Lewy bodies. Mov. Disord. 22, 1581–1586 (2007).

    Article  PubMed  Google Scholar 

  47. Abbott, R. D. et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57, 456–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Imamura, K. et al. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 106, 518–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Burguillos, M. A. et al. Caspase signalling controls microglia activation and neurotoxicity. Nature 472, 319–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Williams-Gray, C. H. et al. Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Mov. Disord. 31, 995–1003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J.-Y., Tuazon, J. P., Ehrhart, J., Sanberg, P. R. & Borlongan, C. V. Gutting the brain of inflammation: a key role of gut microbiome in human umbilical cord blood plasma therapy in Parkinson’s disease model. J. Cell. Mol. Med. 23, 5466–5474 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, J.-Y. et al. A gutsy move for cell-based regenerative medicine in Parkinson’s disease: targeting the gut microbiome to sequester inflammation and neurotoxicity. Stem Cell Rev. Rep. 15, 690–702 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Freed, C. R. et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327, 1549–1555 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Widner, H. et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-Methyl-4-Phenyl-L,2,3,6-Tetrahydropyridine (MPTP). N. Engl. J. Med. 327, 1556–1563 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Spencer, D. D. et al. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N. Engl. J. Med. 327, 1541–1548 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. McCune, J. M. & Weissman, I. L. The ban on US government funding research using human fetal tissues: how does this fit with the NIH mission to advance medical science for the benefit of the citizenry? Stem Cell Rep. 13, 777–786 (2019).

    Article  Google Scholar 

  59. Barker, R. A., Parmar, M., Studer, L. & Takahashi, J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 21, 569–573 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. De Sousa, P. A. et al. Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathol. 137, 363–377 (2019).

    Article  PubMed  Google Scholar 

  61. Perrier, A. L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 12543–12548 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 20, 135–148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Loring, J. F. Autologous induced pluripotent stem cell-derived neurons to treat Parkinson’s disease. Stem Cells Dev. 27, 958–959 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Gonzalez, R. et al. Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of Parkinson’s disease. Cell Transplant. 25, 1945–1966 (2016).

    Article  PubMed  Google Scholar 

  66. Bjugstad, K. B. et al. Neural stem cells implanted into MPTP-Treated monkeys increase the size of endogenous tyrosine hydroxylase-positive cells found in the striatum: a return to control measures. Cell Transplant. 14, 183–192 (2005).

    Article  PubMed  Google Scholar 

  67. Gonzalez, R. et al. Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of Parkinson’s disease. Cell Transplant. 24, 681–690 (2015).

    Article  PubMed  Google Scholar 

  68. Gonzalez, R. et al. Deriving dopaminergic neurons for clinical use. A practical approach. Sci. Rep. 3, 1463 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bjugstad, K. B. et al. Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson’s disease. Exp. Neurol. 211, 362–369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun, Z. H. et al. in Neurosurgical Re-Engineering of the Damaged Brain and Spinal Cord (ed. Katayama, Y.) 169–174 (Springer, 2003).

  71. Redmond, D. E. et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc. Natl Acad. Sci. USA 104, 12175–12180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yasuhara, T. et al. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J. Neurosci. 26, 12497–12511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ourednik, J., Ourednik, V., Lynch, W. P., Schachner, M. & Snyder, E. Y. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol. 20, 1103–1110 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Winkler, C., Georgievska, B., Carlsson, T., Lacar, B. & Kirik, D. Continuous exposure to glial cell line-derived neurotrophic factor to mature dopaminergic transplants impairs the graft’s ability to improve spontaneous motor behavior in parkinsonian rats. Neuroscience 141, 521–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Whone, A. et al. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 142, 512–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Whone, A. L. et al. Extended treatment with glial cell line-derived neurotrophic factor in Parkinson’s disease. J. Parkinsons Dis. 9, 301–313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garitaonandia, I. et al. Neural stem cell tumorigenicity and biodistribution assessment for phase I clinical trial in Parkinson’s disease. Sci. Rep. 6, 34478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sandquist, E. J. & Sakaguchi, D. S. Adult neural stem cell plasticity. Neural Regen. Res. 14, 256–257 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hernandez, L., Kozlov, S., Piras, G. & Stewart, C. L. Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc. Natl Acad. Sci. USA 100, 13344–13349 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. International Stem Cell Corporation completes enrollment and dosing in its Parkinson’s disease clinical trial. GlobeNewswire (29 April 2019); https://investors.internationalstemcell.com/profiles/investor/ResLibraryView.asp?BzID=1468&ResLibraryID=90318&Category=958

  81. Nolbrant, S., Heuer, A., Parmar, M. & Kirkeby, A. Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nat. Protoc. 12, 1962–1979 (2017).

  82. Ono, Y. et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134, 3213–3225 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Kee, N. et al. Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages. Cell Stem Cell 20, 29–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Arenas, E., Denham, M. & Villaescusa, J. C. How to make a midbrain dopaminergic neuron. Development 142, 1918–1936 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Roy, N. S. et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. 12, 1259–1268 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steinbeck, J. A. et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat. Biotechnol. 33, 204–209 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s Disease. Cell Stem Cell 15, 653–665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yin, D., Tavakoli, T., Gao, W.-Q. & Ma, W. in Human Embryonic Stem Cells Handbook (ed. Turksen, K.) 247–259 (Humana Press, 2012).

  92. Kol’tsova, A. M. et al. Comparative characteristics of new human embryonic stem cell lines SC5, SC6, SC7, and SC3a. Russ. J. Dev. Biol. 42, 249–263 (2011).

  93. WHO Guidelines on Transmissible Spongiform Encephalopathies 1 in Relation to Biological and Pharmaceutical Products (WHO, 2003).

  94. Acheson, D. & MacKnight, C. Clinical implications of bovine spongiform encephalopathy. Clin. Infect. Dis. 32, 1726–1731 (2001).

    Article  Google Scholar 

  95. Stafford, N. Germany liberalises law on stem cell research. Brit. Med. J. 336, 851 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pasotti, J. & Stafford, N. It’s legal: Italian researchers defend their work with embryonic stem cells. Nature 442, 229 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Laguna Goya, R., Busch, R., Mathur, R., Coles, A. J. & Barker, R. A. Human fetal neural precursor cells can up-regulate MHC class I and class II expression and elicit CD4 and CD8 T cell proliferation. Neurobiol. Dis. 41, 407–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Mason, D. W. et al. The fate of allogeneic and xenogeneic neuronal tissue transplanted into the third ventricle of rodents. Neuroscience 19, 685–694 (1986).

    Article  CAS  PubMed  Google Scholar 

  99. Hicks, A. U., MacLellan, C. L., Chernenko, G. A. & Corbett, D. Long-term assessment of enriched housing and subventricular zone derived cell transplantation after focal ischemia in rats. Brain Res. 1231, 103–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Widner, H., Brundin, P., Björklund, A. & Möller, E. Survival and immunogenicity of dissociated allogeneic fetal neural dopamine-rich grafts when implanted into the brains of adult mice. Exp. Brain Res. 76, 187–197 (1989).

    Article  CAS  PubMed  Google Scholar 

  101. Shroff, G. Human embryonic stem cell therapy in chronic spinal cord injury: a retrospective study. Clin. Transl. Sci. 9, 168–175 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schwartz, S. D. et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379, 713–720 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Hallett, P. J. et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16, 269–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kikuchi, T. et al. Idiopathic Parkinson’s disease patient-derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. J. Neurosci. Res. 95, 1829–1837 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Doi, D. et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep. 2, 337–350 (2014).

    Article  CAS  Google Scholar 

  107. Hargus, G. et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl Acad. Sci. USA 107, 15921–15926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, S. et al. Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov. 1, 15012 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhao, T., Zhang, Z.-N., Rong, Z. & Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature 474, 212–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Hoban, D. B. et al. Impact of α-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized α-synuclein rat model of PD. Proc. Natl Acad. Sci. USA 117, 15209–15220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Burrows, C. K. et al. Genetic variation, not cell type of origin, underlies the majority of identifiable regulatory differences in iPSCs. PLoS Genet. 12, e1005793 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Liang, G. & Zhang, Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 13, 149–159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chakradhar, S. An eye to the future: researchers debate best path for stem cell-derived therapies. Nat. Med. 22, 116–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Blair, N. F. & Barker, R. A. Making it personal: the prospects for autologous pluripotent stem cell-derived therapies. Regen. Med. 11, 423–425 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Schweitzer, J. S. et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 382, 1926–1932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Morizane, A. et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat. Commun. 8, 385 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Morizane, A. et al. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a nonhuman primate. Stem Cell Rep. 1, 283–292 (2013).

    Article  CAS  Google Scholar 

  118. Pappas, D. J. et al. Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the California population: evaluating matching in a multiethnic and admixed population. Stem Cells Transl. Med. 4, 413–418 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kelton, W. et al. Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange. Sci. Rep. 7, 45775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mattapally, S. et al. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J. Am. Heart Assoc. 7, e010239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Swistowski, A. et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28, 1893–1904 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Kikuchi, T. et al. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J. Parkinsons. Dis. 1, 395–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Rhee, Y.-H. et al. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J. Clin. Invest. 121, 2326–2335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Takahashi, J. Preparing for first human trial of induced pluripotent stem cell-derived cells for Parkinson’s disease: an interview with Jun Takahashi. Regen. Med. 14, 93–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Ojala, M. et al. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS ONE 7, e48659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gu, Q. et al. Accreditation of biosafe clinical-grade human embryonic stem cells according to Chinese regulations. Stem Cell Rep. 9, 366–380 (2017).

    Article  Google Scholar 

  128. Krencik, R. & Zhang, S.-C. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat. Protoc. 6, 1710–1717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kane, K. I. W. et al. Automated microfluidic cell culture of stem cell derived dopaminergic neurons. Sci. Rep. 9, 1796 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Moreno, E. L. et al. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip 15, 2419–2428 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Reubinoff, B. E., Pera, M. F., Vajta, G. & Trounson, A. O. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum. Reprod. 16, 2187–2194 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Ha, S. Y. et al. Cryopreservation of human embryonic stem cells without the use of a programmable freezer. Hum. Reprod. 20, 1779–1785 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Orellana, M. D. et al. Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement. Cryobiology 71, 151–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Wakeman, D. R. et al. Cryopreservation maintains functionality of human iPSC dopamine neurons and rescues parkinsonian phenotypes in vivo. Stem Cell Rep. 9, 149–161 (2017).

    Article  CAS  Google Scholar 

  135. Niclis, J. C. et al. Efficiently specified ventral midbrain dopamine neurons from human pluripotent stem cells under xeno-free conditions restore motor deficits in parkinsonian rodents. Stem Cells Transl. Med. 6, 937–948 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Imaizumi, K. et al. A simple and highly effective method for slow-freezing human pluripotent stem cells using dimethyl sulfoxide, hydroxyethyl starch and ethylene glycol. PLoS ONE 9, e88696 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Galipeau, J. Concerns arising from MSC retrieval from cryostorage and effect on immune suppressive function and pharmaceutical usage in clinical trials. ISBT Sci. Ser. 8, 100–101 (2013).

    Article  Google Scholar 

  138. Marsh, S. E. et al. HuCNS-SC human NSCs fail to differentiate, form ectopic clusters, and provide no cognitive benefits in a transgenic model of Alzheimer’s disease. Stem Cell Rep. 8, 235–248 (2017).

    Article  CAS  Google Scholar 

  139. Baker, D. E. C. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Amps, K. et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat. Biotechnol. 29, 1132–1144 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Baker, D. et al. Detecting genetic mosaicism in cultures of human pluripotent stem cells. Stem Cell Rep. 7, 998–1012 (2016).

    Article  CAS  Google Scholar 

  142. Martins-Taylor, K. et al. Recurrent copy number variations in human induced pluripotent stem cells. Nat. Biotechnol. 29, 488–491 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Avery, S. et al. BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Rep. 1, 379–386 (2013).

    Article  CAS  Google Scholar 

  144. Weissbein, U., Plotnik, O., Vershkov, D. & Benvenisty, N. Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells. PLoS Genet. 13, e1006979 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yuan, Y. et al. Dopaminergic precursors differentiated from human blood-derived induced neural stem cells improve symptoms of a mouse Parkinson’s disease model. Theranostics 8, 4679–4694 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pauklin, S. & Vallier, L. Activin/nodal signalling in stem cells. Development 142, 607–619 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Xu, R.-H. et al. NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3, 196–206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Grow, D. A. et al. Differentiation and characterization of dopaminergic neurons from baboon induced pluripotent stem cells. Stem Cells Transl. Med. 5, 1133–1144 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fedele, S. et al. Expansion of human midbrain floor plate progenitors from induced pluripotent stem cells increases dopaminergic neuron differentiation potential. Sci. Rep. 7, 6036 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tiklová, K. et al. Single cell transcriptomics identifies stem cell-derived graft composition in a model of Parkinson’s disease. Nat. Commun. 11, 2434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bernau, K. et al. In vivo tracking of human neural progenitor cells in the rat brain using bioluminescence imaging. J. Neurosci. Methods 228, 67–78 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Im, H.-J. et al. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease. Mol. Imaging 12, 224–234 (2013).

  154. Capowski, E. E. et al. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. J. Neurosci. Methods 163, 338–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Iwano, S. et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935–939 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Tennstaedt, A., Aswendt, M., Adamczak, J. & Hoehn, M. in Imaging and Tracking Stem Cells: Methods and Protocols (ed. Turksen, K.) 153–166 (Humana Press, 2013).

  158. Comenge, J. et al. Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes. eLife 7, e33140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ashraf, S. et al. In vivo fate of free and encapsulated iron oxide nanoparticles after injection of labelled stem cells. Nanoscale Adv. 1, 367–377 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Mousavinejad, M. et al. Assessing human embryonic stem cell-derived dopaminergic neuron progenitor transplants using non-invasive imaging techniques. Mol. Imaging Biol. https://doi.org/10.1007/s11307-020-01499-4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Byers, B. et al. Direct in vivo assessment of human stem cell graft–host neural circuits. Neuroimage 114, 328–337 (2015).

    Article  PubMed  Google Scholar 

  163. Hayashi, T. et al. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J. Clin. Invest. 123, 272–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Bové, J. & Perier, C. Neurotoxin-based models of Parkinson’s disease. Neuroscience 211, 51–76 (2012).

    Article  PubMed  Google Scholar 

  165. Kuan, W.-L. et al. Systemic α-synuclein injection triggers selective neuronal pathology as seen in patients with Parkinson’s disease. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0608-9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Grow, D. A., McCarrey, J. R. & Navara, C. S. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell Res. 17, 352–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Taylor, T. N., Greene, J. G. & Miller, G. W. Behavioral phenotyping of mouse models of Parkinson’s disease. Behav. Brain Res. 211, 1–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Choudhury, G. R. & Daadi, M. M. Charting the onset of Parkinson-like motor and non-motor symptoms in nonhuman primate model of Parkinson’s disease. PLoS ONE 13, e0202770 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mizutani, M., Terunuma, H., Samejima, H., Ashiba, K. & Kino-oka, M. Variation in the manufacturing reproducibility of autologous cell-based products depending on raw material shipment conditions. Regen. Ther. https://doi.org/10.1016/j.reth.2019.04.005 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Garber, K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat. Biotechnol. 33, 890–891 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Itakura, G. et al. Controlling immune rejection is a fail-safe system against potential tumorigenicity after human iPSC-derived neural stem cell transplantation. PLoS ONE 10, e0116413 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Caforio, A. L. et al. Skin cancer in heart transplant recipients. Circulation 102, Iii-222–Iii-227 (2000).

    Article  CAS  Google Scholar 

  174. Gallagher, M. P. et al. Long-term cancer risk of immunosuppressive regimens after kidney transplantation. J. Am. Soc. Nephrol. 21, 852–858 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Aberra, F. N. & Lichtenstein, G. R. Methods to avoid infections in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 11, 685–695 (2005).

    Article  PubMed  Google Scholar 

  176. Davis, M. M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95, 5199–5204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14, 121–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Barker, R. A., Barrett, J., Mason, S. L. & Björklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 84–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Barker, R. A. et al. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat. Med. 25, 1045–1053 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Parmar, M., Takahashi, J., Studer, L. & Barker, R. A. GFORCE-PD still going strong in 2016. npj Parkinsons Dis. 3, 16014 (2017).

    Article  PubMed Central  Google Scholar 

  183. Lindvall, O. et al. Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet 332, 1483–1484 (1988).

    Article  Google Scholar 

  184. Kordower, J. H. et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N. Engl. J. Med. 332, 1118–1124 (1995).

    Article  CAS  PubMed  Google Scholar 

  185. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  186. Kordower, J. H. et al. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Barker, R. A. et al. G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson’s disease. npj Parkinsons Dis. 1, 15017 (2015).

  188. Normile, D. First-of-its-kind clinical trial will use reprogrammed adult stem cells to treat Parkinson’s. Science (30 July 2018).

  189. Garitaonandia, I. et al. Novel approach to stem cell therapy in Parkinson’s disease. Stem Cells Dev. 27, 951–957 (2018).

    Article  PubMed  Google Scholar 

  190. Wang, Y.-K. et al. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Rep. 11, 171–182 (2018).

    Article  CAS  Google Scholar 

  191. Song, B. et al. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models. J. Clin. Invest. 130, 904–920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Studer, L. in Functional Neural Transplantation IV (eds Dunnett, S. B. & Björklund, A.) Ch. 8 (Elsevier, 2017).

  193. Kirkeby, A., Parmar, M. & Barker, R. A. in Functional Neural Transplantation IV (eds Dunnett, S. B. & Björklund, A.) Ch. 7 (Elsevier, 2017).

  194. Lindvall, O. et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6-month follow-up. JAMA Neurol. 46, 615–631 (1989).

    CAS  Google Scholar 

  195. Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 28, 343–355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Piao, J. et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 28, 217–229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Dunkerson, J. et al. Combining enriched environment and induced pluripotent stem cell therapy results in improved cognitive and motor function following traumatic brain injury. Restor. Neurol. Neurosci. 32, 675–687 (2014).

    PubMed  Google Scholar 

  198. Wei, Z. Z. et al. Intracranial transplantation of hypoxia-preconditioned iPSC-derived neural progenitor cells alleviates neuropsychiatric defects after traumatic brain injury in juvenile rats. Cell Transplant. 25, 797–809 (2016).

    Article  PubMed  Google Scholar 

  199. Romanyuk, N. et al. Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair. Cell Transplant. 24, 1781–1797 (2015).

    Article  PubMed  Google Scholar 

  200. Sareen, D. et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol. 522, 2707–2728 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kobayashi, Y. et al. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS ONE 7, e52787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cyranoski, D. ‘Reprogrammed’ stem cells to treat spinal-cord injuries for the first time. Nature https://doi.org/10.1038/d41586-019-00656-2 (2019).

  203. Manley, N. C., Priest, C. A., Denham, J., Wirth, E. D. III & Lebkowski, J. S. Human embryonic stem cell-derived oligodendrocyte progenitor cells: preclinical efficacy and safety in cervical spinal cord injury. Stem Cells Transl. Med. 6, 1917–1929 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sharp, J., Frame, J., Siegenthaler, M., Nistor, G. & Keirstead, H. S. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28, 152–163 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Keirstead, H. S. et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25, 4694–4705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Asterias provides six month data readout for its AST-OPC1 phase 1/2a clinical trial in severe spinal cord injury. GlobeNewswire (28 February 2018); https://www.globenewswire.com/en/news-release/2018/07/17/1538161/0/en/Asterias-Provides-Six-Month-Data-Readout-for-its-AST-OPC1-Phase-1-2a-Clinical-Trial-in-Severe-Spinal-Cord-Injury.html

  207. Sharma, R. et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 11, eaat5580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cyranoski, D. Next-generation stem cells cleared for human trial. Nature https://doi.org/10.1038/nature.2014.15897 (2014).

    Article  PubMed  Google Scholar 

  209. da Cruz, L. et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 36, 328 (2018).

    Article  PubMed  Google Scholar 

  210. Schwartz, S. D., Tan, G., Hosseini, H. & Nagiel, A. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest. Ophthalmol. Vis. Sci. 57, ORSFc1–ORSFc9 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Mehat, M. S. et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology 125, 1765–1775 (2018).

    Article  PubMed  Google Scholar 

  212. Nizzardo, M. et al. Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum. Mol. Genet. 23, 342–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Kondo, T. et al. Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice. Stem Cell Rep. 3, 242–249 (2014).

    Article  CAS  Google Scholar 

  214. Nizzardo, M. et al. iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models. Hum. Mol. Genet. 25, 3152–3163 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Izrael, M. et al. Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1G93A and NSG animal models. Stem Cell Res. Ther. 9, 152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Baloh, R. H. et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat. Med. 28, 1813–1822 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Fujiwara, N. et al. Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursors derived from human iPS cells. Neurosci. Lett. 557, 129–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  218. Wang, Q. et al. Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J. Med. Invest. 53, 61–69 (2006).

    Article  PubMed  Google Scholar 

  219. Tang, J. et al. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Aβ(1–40) injured rats. Neurosci. Res. 62, 86–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  220. Al-Gharaibeh, A. et al. Induced pluripotent stem cell-derived neural stem cell transplantations reduced behavioral deficits and ameliorated neuropathological changes in YAC128 mouse model of Huntington’s disease. Front. Neurosci. 11, 628 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Jeon, I. et al. In vivo roles of a patient-derived induced pluripotent stem cell line (HD72-iPSC) in the YAC128 model of Huntington’s disease. Int. J. Stem Cells 7, 43–47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Cho, I. K., Hunter, C. E., Ye, S., Pongos, A. L. & Chan, A. W. S. Combination of stem cell and gene therapy ameliorates symptoms in Huntington’s disease mice. npj Regen. Med. 4, 7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Reidling, J. C. et al. Human neural stem cell transplantation rescues functional deficits in R6/2 and Q140 Huntington’s disease mice. Stem Cell Rep. 10, 58–72 (2018).

    Article  CAS  Google Scholar 

  224. Vorsanova, S. G., Yurov, Y. B. & Iourov, I. Y. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol. Cytogenet. 3, 1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Gozzetti, A. & Le Beau, M. M. Fluorescence in situ hybridization: uses and limitations. Semin. Hematol. 37, 320–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  226. Bridge, J. A. Advantages and limitations of cytogenetic, molecular cytogenetic, and molecular diagnostic testing in mesenchymal neoplasms. J. Orthop. Sci. 13, 273–282 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Dunn, P. et al. Next generation sequencing methods for diagnosis of epilepsy syndromes. Front. Genet. 9, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Riolobos, L. et al. HLA engineering of human pluripotent stem cells. Mol. Ther. 21, 1232–1241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang, Y. et al. Knockout of beta-2 microglobulin reduces stem cell-induced immune rejection and enhances ischaemic hindlimb repair via exosome/miR-24/Bim pathway. J. Cell Mol. Med. 24, 695–710 (2019).

  230. Deuse, T. et al. Immunobiology of naïve and genetically modified HLA-class-I-knockdown human embryonic stem cells. J. Cell Sci. 124, 3029–3037 (2011).

    Article  CAS  PubMed  Google Scholar 

  231. Saidulu, M. et al. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J. Am. Heart Assoc. 7, e010239 (2018).

    Article  Google Scholar 

  232. Xu, H. et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Fazal for invaluable discussions on the use of stem cells for neurodegenerative diseases other than Parkinson’s disease, and V. Pisupati for help in understanding how graft survival is influenced by cell composition. The authors acknowledge funding from the Cambridge Trust, the Wellcome/MRC funded Cambridge Stem Cell Institute, the MRC funded UK RMP PSEC (MR/R015724/1) and the NIHR Cambridge Biomedical Research Centre (146281). The views expressed in this work are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Contributions

R.A.B. and S.S. conceived, wrote and revised the manuscript.

Corresponding author

Correspondence to Roger A. Barker.

Ethics declarations

Competing interests

R.A.B. offers consultancy advice around cell-based therapies for Parkinson’s disease to Living Cell Technologies, Fujifilm Cellular Dynamics Inc., BlueRock Therapeutics, Novo Nordisk, Cellino Biotech and Aspen Neuroscience. S.S. declares no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skidmore, S., Barker, R.A. Challenges in the clinical advancement of cell therapies for Parkinson’s disease. Nat. Biomed. Eng 7, 370–386 (2023). https://doi.org/10.1038/s41551-022-00987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00987-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing