Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood–brain barrier in rodents and primates

Abstract

The development of gene therapies for the treatment of diseases of the central nervous system has been hindered by the limited availability of adeno-associated viruses (AAVs) that efficiently traverse the blood–brain barrier (BBB). Here, we report the rational design of AAV9 variants displaying cell-penetrating peptides on the viral capsid and the identification of two variants, AAV.CPP.16 and AAV.CPP.21, with improved transduction efficiencies of cells of the central nervous system on systemic delivery (6- to 249-fold across 4 mouse strains and 5-fold in cynomolgus macaques, with respect to the AAV9 parent vector). We also show that the neurotropism of AAV.CPP.16 is retained in young and adult macaques, that this variant displays enhanced transcytosis at the BBB as well as increased efficiency of cellular transduction relative to AAV9, and that it can be used to deliver antitumour payloads in a mouse model of glioblastoma. AAV capsids that can efficiently penetrate the BBB will facilitate the clinical translation of gene therapies aimed at the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Capsid engineering of BBB-penetrant AAV variants in mice.
Fig. 2: Systemic CNS gene delivery in NHPs by AAV.CPP.16 and AAV.CPP.21.
Fig. 3: Types of CNS cells transduced by AAV.CPP.16.
Fig. 4: Effects of AAV.CPP.16 on BBB integrity, transcytosis and cellular transduction.
Fig. 5: AAV.CPP.16-based systemic PD-L1 antibody therapy against GBM.
Fig. 6: Systemic HSV-TK1 suicide gene therapy mediated by AAV.CPP.16.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. All raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Hudry, E. & Vandenberghe, L. H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101, 839–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug. Discov. 17, 641–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Gray, S. J. The evolution of adeno-associated virus capsids for CNS gene therapy. Cell Gene Ther. Insights 5, 1361–1368 (2019).

    Article  Google Scholar 

  4. Murlidharan, G., Samulski, R. J. & Asokan, A. Biology of adeno-associated viral vectors in the central nervous system. Front. Mol. Neurosci. 7, 76 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pardridge, W. M. The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2, 3–14 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Gao, G. et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gray, S. J. et al. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol. Ther. 19, 1058–1069 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, H. et al. Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol. Ther. 19, 1440–1448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellsworth, J. L. et al. Clade F AAVHSCs cross the blood brain barrier and transduce the central nervous system in addition to peripheral tissues following intravenous administration in nonhuman primates. PLoS ONE 14, e0225582 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Choudhury, S. R. et al. Widespread central nervous system gene transfer and silencing after systemic delivery of novel AAV-AS vector. Mol. Ther. 24, 726–735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanlon, K. S. et al. Selection of an efficient AAV vector for robust CNS transgene expression. Mol. Ther. Methods Clin. Dev. 15, 320–332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hudry, E. et al. Efficient gene transfer to the central nervous system by single-stranded Anc80L65. Mol. Ther. Methods Clin. Dev. 10, 197–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nonnenmacher, M. et al. Rapid evolution of blood–brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol. Ther. Methods Clin. Dev. 20, 366–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Deo, A. K., Theil, F. P. & Nicolas, J. M. Confounding parameters in preclinical assessment of blood–brain barrier permeation: an overview with emphasis on species differences and effect of disease states. Mol. Pharm. 10, 1581–1595 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Song, H. W. et al. Transcriptomic comparison of human and mouse brain microvessels. Sci. Rep. 10, 12358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Brown, N. M., Pfau, S. J. & Gu, C. Bridging barriers: a comparative look at the blood–brain barrier across organisms. Genes Dev. 32, 466–478 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Hordeaux, J. et al. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol. Ther. 26, 664–668 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hordeaux, J. et al. The GPI-linked protein LY6A drives AAV-PHP.B transport across the blood–brain barrier. Mol. Ther. 27, 912–921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsuzaki, Y. et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci. Lett. 665, 182–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, Q. et al. Delivering genes across the blood–brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS ONE 14, e0225206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Batista, A. R. et al. Ly6a differential expression in blood–brain barrier is responsible for strain specific central nervous system transduction profile of AAV-PHP.B. Hum. Gene Ther. 31, 90–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2021).

    Article  PubMed  Google Scholar 

  28. Kardani, K., Milani, A., S, H. S. & Bolhassani, A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin. Drug Deliv. 16, 1227–1258 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Böhmová, E. et al. Cell-penetrating peptides: a useful tool for the delivery of various cargoes into cells. Physiol. Res. 67, s267–s279 (2018).

    Article  PubMed  Google Scholar 

  30. Oller-Salvia, B., Sánchez-Navarro, M., Giralt, E. & Teixidó, M. Blood–brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem. Soc. Rev. 45, 4690–4707 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Stalmans, S. et al. Cell-penetrating peptides selectively cross the blood–brain barrier in vivo. PLoS ONE 10, e0139652 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cho, C. F. et al. Blood–brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat. Commun. 8, 15623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meng, Y. et al. Cell-penetrating peptides enhance the transduction of adeno-associated virus serotype 9 in the central nervous system. Mol. Ther. Methods Clin. Dev. 21, 28–41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, X., He, T., Chai, Z., Samulski, R. J. & Li, C. Blood–brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials 176, 71–83 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Büning, H. & Srivastava, A. Capsid modifications for targeting and improving the efficacy of AAV vectors. Mol. Ther. Methods Clin. Dev. 12, 248–265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee, E. J., Guenther, C. M. & Suh, J. Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering. Curr. Opin. Biomed. Eng. 7, 58–63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Muller, O. J. et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat. Biotechnol. 21, 1040–1046 (2003).

    Article  PubMed  Google Scholar 

  39. Münch, R. C. et al. Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat. Commun. 6, 6246 (2015).

    Article  PubMed  Google Scholar 

  40. Girod, A. et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat. Med. 5, 1052–1056 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida, T. et al. Bax-inhibiting peptide derived from mouse and rat Ku70. Biochem. Biophys. Res. Commun. 321, 961–966 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Gomez, J. A. et al. Cell-penetrating penta-peptides (CPP5s): measurement of cell entry and protein-transduction activity. Pharmaceuticals 3, 3594–3613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Samaranch, L. et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol. Ther. 22, 329–337 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hordeaux, J. et al. Adeno-associated virus-induced dorsal root ganglion pathology. Hum. Gene Ther. 31, 808–818 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Kotchey, N. M. et al. A potential role of distinctively delayed blood clearance of recombinant adeno-associated virus serotype 9 in robust cardiac transduction. Mol. Ther. 19, 1079–1089 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Di Pasquale, G. et al. Bovine AAV transcytosis inhibition by tannic acid results in functional expression of CFTR in vitro and altered biodistribution in vivo. Gene Ther. 19, 576–581 (2012).

    Article  PubMed  Google Scholar 

  47. Tugizov, S. M., Herrera, R. & Palefsky, J. M. Epstein–Barr virus transcytosis through polarized oral epithelial cells. J. Virol. 87, 8179–8194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Lim, M., Xia, Y., Bettegowda, C. & Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15, 422–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Sarkaria, J. N. et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro. Oncol. 20, 184–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okazaki, T. & Honjo, T. PD-1 and PD-1 ligands: from discovery to clinical application. Int. Immunol. 19, 813–824 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Nduom, E. K. et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro. Oncol. 18, 195–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Engeland, C. E. et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol. Ther. 22, 1949–1959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jun, H. J. et al. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene 31, 3039–3050 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Karjoo, Z., Chen, X. & Hatefi, A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv. Drug Deliv. Rev. 99, 113–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Sawada, M., Hayes, P. & Matsuyama, S. Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70. Nat. Cell Biol. 5, 352–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Fell, V. L. & Schild-Poulter, C. The Ku heterodimer: function in DNA repair and beyond. Mutat. Res. Rev. Mutat. Res. 763, 15–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Merkel, S. F. et al. Trafficking of adeno-associated virus vectors across a model of the blood–brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. J. Neurochem. 140, 216–230 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Simonato, M. et al. Progress in gene therapy for neurological disorders. Nat. Rev. Neurol. 9, 277–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hocquemiller, M., Giersch, L., Audrain, M., Parker, S. & Cartier, N. Adeno-associated virus-based gene therapy for CNS diseases. Hum. Gene Ther. 27, 478–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Parker Kerrigan, B. C., Shimizu, Y., Andreeff, M. & Lang, F. F. Mesenchymal stromal cells for the delivery of oncolytic viruses in gliomas. Cytotherapy 19, 445–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jain, R. K. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8, 610–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Bhaskaran, V., Yao, Y., Bei, F. & Peruzzi, P. Engineering, delivery, and biological validation of artificial microRNA clusters for gene therapy applications. Nat. Protoc. 14, 3538–3553 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhere, D. et al. Simultaneous downregulation of miR-21 and upregulation of miR-7 has anti-tumor efficacy. Sci. Rep. 10, 1779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reardon, D. A. et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res. 4, 124–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Reardon, D. A. et al. Phase II study to evaluate safety and efficacy of MEDI4736 (durvalumab) + radiotherapy in patients with newly diagnosed unmethylated MGMT glioblastoma (new unmeth GBM). J. Clin. Oncol. 37, 2032–2032 (2019).

    Article  Google Scholar 

  69. Ene, C. I. et al. Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro. Oncol. 22, 639–651 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Hambardzumyan, D., Gutmann, D. H. & Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. D’Costa, S. et al. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR. Mol. Ther. Methods Clin. Dev. 5, 16019 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Meliani, A. et al. Determination of anti-adeno-associated virus vector neutralizing antibody titer with an in vitro reporter system. Hum. Gene Ther. Methods 26, 45–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. J. Smith and H. Hirai for providing feedback on the manuscript, G. Freeman for providing the PD-L1 antibody, A. Charest and R. Piranlioglu for providing the GBM1694 cells, H. Jin for providing AAV reagents and D. Feng, Y. Ni and B. J. Scott for technical assistance. This study was supported by a Brigham and Women’s Hospital sundry fund (to F.B.).

Author information

Authors and Affiliations

Authors

Contributions

F.B. conceived and supervised the study, with input from E.A.C.; Y.Y., J.Wang, Y.L. and Y.Q. performed experiments and collected data, with inputs from K.W., Y.Z., Y.C., Z.Y., J.Wan and J.L.; H.N., S.E.L. and C.-F.C. contributed to methodology; F.B., Y.Y., J.W., Y.L. and Y.Q. analysed data. F.B. and Y.Y. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Fengfeng Bei.

Ethics declarations

Competing interests

F.B. and E.A.C. receive royalties from patents generated by this study (Patent applications: PCT/US19/41386, PCT/US21/12746 and PCT/US22/73051). F.B. is a co-founder and scientific advisor of Brave Bio Inc., an AAV gene therapy start-up. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Initial round of in vivo selection revealing potential candidates for further optimization.

a, Fluorescence images of sagittal brain sections in mice 21 days after intravenous injection of 1 × 1010 vg of single-stranded AAV-EF1α-H2B-RFP. White dots indicate RFP-positive cells. Scale bars: 1000 μm for whole brain section and 30 μm for insets. b, Fluorescence images of sagittal brain sections in mice 21 days after intravenous injection of 1 × 1011 vg of selected AAVs-EF1α-H2B-RFP. Scale bars: 1,000 μm for whole brain section and 300 μm for insets. c, Percentage of transduced brain cells and relative fold change of AAV transduction as quantified by counting transduced RFP-positive cells using ImageJ. n = 3 mice per group, mean ± s.e.m., one-way ANOVA with Tukey’s post-test.

Source data

Extended Data Fig. 2 Sequence optimization of Bip inserts yields additional AAV variants with further enhanced brain tropism.

a, Sequences of standard 5-mer Bips, as well as derivatives during optimization. b, Fluorescence images of sagittal brain sections in mice 21 days after intravenous injection of 1 × 1011 vg of AAVs-EF1α-H2B-RFP. Scale bars: 1000 μm for whole brain section and 300 μm for insets. c, Percentage of transduced brain cells and relative fold change of AAV transduction in the brain as quantified by counting RFP-positive cells using ImageJ. d, Percentage of transduced liver cells by AAVs relative to DAPI counter-staining. White dots indicate RFP-positive cells. n = 3 mice per group, mean ± s.e.m., one-way ANOVA with Tukey’s post-test.

Source data

Extended Data Fig. 3 Brain transductions by AAV.CPP.16 and AAV.CPP.21 in four common mouse strains.

a-l, Representative fluorescence images of brain regions in C57BL/6J, BALB/cJ, FVB/NJ and 129S1/SvlmJ mice 21 days after intravenous injection of 1 × 1011 vg of AAVs-EF1α-H2B-RFP (AAV9, a-d; AAV.CPP.16, e-h; AAV.CPP.21, i-l). White dots indicate RFP-positive cells. Scale bars: 500 μm. m, quantification of transduced brain cells in C57BL/6J at a high dose of AAVs (1 × 1012 vg, IV). n = 3 mice per group, mean ± s.e.m., one-way ANOVA with Tukey’s post-test.

Source data

Extended Data Fig. 4 Viral genome distribution of AAV.CPP.16 vs. AAV9 in BALB/cJ.

5 × 1011 vg AAVs-CAG-GFP-WPRE were intravenously injected to BALB/cJ mice and AAV genomic DNA was isolated 21 days later. AAV viral genomes in selected CNS regions (a) and peripheral organs (b) were measured by qPCR using primers targeting WPRE and normalized to mouse genome (targeting glucagon). n = 4 mice per group, mean ± s.e.m., Student’s t-test.

Source data

Extended Data Fig. 5 Transduction of oligodendrocytes, motor neurons and peripheral tissues by AAV.CPP.16 and AAV9 in BALB/cJ.

a-e, Transduced oligodendrocytes (Olig2+) in the brain and quantification on percentage. Scale bar for a, b: 25 μm. Scale bar for c, d: 10 μm. n = 3 mice per group, mean ± s.e.m. f, Immunostaining of spinal cord sections. Motor neurons were visualized using ChAT antibody. Scale bars: 250 μm for the left two and 50 μm for the right two. g, Transduction of peripheral tissues and quantification on relative fold change. BALB/cJ mice were examined 3 weeks after intravenous injection of 1× 1012 vg AAV.CPP.16-CAG-H2B-GFP or AAV9-CAG-H2B-GFP. Mean ± s.e.m., n = 4-8, Student’s t-test.

Source data

Extended Data Fig. 6 Imaging, western blot and histological analysis for AAV.CPP.16-aPD-L1-treated GBM-bearing mice.

a, Timeline for procedures in a mouse glioblastoma (GBM) model. b, Example of bioluminescence imaging for verification of tumor formation at day 7 post tumor implantation. c, aPD-L1-HA expression in the liver and muscle as measured by western blot. d-f, Representative images of hematoxylin-eosin-stained brain sections in a long-term survivor mouse treated with AAV.CPP.16-aPD-L1. Little residual tumor tissue was detectable suggesting eradication of GBM. g, Immunostaining showing AAV.CPP.16-mediated expression of aPD-L1-HA and astrogliosis in one long-term-surviving animal. Scale bar in g: 25 μm. n = 3-5 mice per group, mean ± s.e.m., one-way ANOVA with Tukey’s post-test.

Source data

Extended Data Fig. 7 Flow cytometry analysis of tumor-infiltrating lymphocytes (TILs).

a, Gating strategies for all panels. Lymphocyte populations were selected based on SSC-H and FSC-H parameters, followed by FSC-H and FSC-A gating to eliminate doublets. CD45 marks for all immune cells. b, Representative flow cytometry plots and quantification of T cells (CD3+/CD45+) and their subtypes (CD4+/CD3+ T cells, CD8+/CD3+ T cells, IFNg+/CD3+ T cells, Granzyme B+/CD8+ T cells, CD25+/Foxp3 + /CD4+ Tregs). n = 3-11 mice per group, mean ± s.e.m., one-way ANOVA with Tukey’s post-test.

Source data

Extended Data Fig. 8 Pro-survival effect by monoclonal antibodies against PD-L1 in GL261 mouse GBM model.

a, Experimental timeline for studying the effect of PD-L1 mAB in the GL261 GBM model. A large dose of PD-L1 mAB (339.6A2, mouse IgG1, κ; 2.25 mg in total) was administered. b, Kaplan–Meier survival curves showing survival outcome of PD-L1 mAB or control in the GL261 GBM model. n = 6 each group, Log-rank test used to define statistical significance.

Source data

Extended Data Fig. 9 Pro-survival effect of systematic therapy of AAV.CPP.16-aPD-L1 in a genetic GBM tumor model.

a, Experimental timeline. GBM1694 tumor cells with human wild-type EGFR over-expression and Ink4a/Arf-PTEN co-deletion were implanted into BALB/c mice to model GBM. 1 × 1012 vg of AAV.CPP.16-CAG-aPD-L1-HA were administered at day 5 post tumor implantation. b, Kaplan–Meier survival curves showing survival times of AAV.CPP.16-aPD-L1 or PBS control. n = 6 each group, Log-rank test used to define statistical significance.

Source data

Supplementary information

Supplementary Information

Supplementary figures and list of supplementary tables.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–4.

Supplementary Tables

Source data for the supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Wang, J., Liu, Y. et al. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood–brain barrier in rodents and primates. Nat. Biomed. Eng 6, 1257–1271 (2022). https://doi.org/10.1038/s41551-022-00938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00938-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer