Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis

Abstract

Antibiotic-induced alterations in the gut microbiota are implicated in many metabolic and inflammatory diseases, increase the risk of secondary infections and contribute to the emergence of antimicrobial resistance. Here we report the design and in vivo performance of an engineered strain of Lactococcus lactis that altruistically degrades the widely used broad-spectrum antibiotics β-lactams (which disrupt commensal bacteria in the gut) through the secretion and extracellular assembly of a heterodimeric β-lactamase. The engineered β-lactamase-expression system does not confer β-lactam resistance to the producer cell, and is encoded via a genetically unlinked two-gene biosynthesis strategy that is not susceptible to dissemination by horizontal gene transfer. In a mouse model of parenteral ampicillin treatment, oral supplementation with the engineered live biotherapeutic minimized gut dysbiosis without affecting the ampicillin concentration in serum, precluded the enrichment of antimicrobial resistance genes in the gut microbiome and prevented the loss of colonization resistance against Clostridioides difficile. Engineered live biotherapeutics that safely degrade antibiotics in the gut may represent a suitable strategy for the prevention of dysbiosis and its associated pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A heterodimeric β-lactamase (spTEM1) system for the extracellular degradation of β-lactam antibiotics.
Fig. 2: Enzymatic activity of the spTEM1 β-lactamase in the mouse intestine does not influence ampicillin concentration in serum.
Fig. 3: L. lactis spTEM1 protects the diversity and composition of the gut microbiota in an ampicillin-induced dysbiosis murine model.
Fig. 4: L. lactis spTEM1 prevents the enrichment of ARGs following the administration of ampicillin in mice.
Fig. 5: L. lactis spTEM1 maintains colonization resistance against C. difficile in a mouse model of ampicillin-induced dysbiosis.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. All DNA sequence data generated in this study are available from the Sequence Read Archive with accession number PRJNA803721. Source data are provided with this paper.

Code availability

All code for the 16S rDNA analysis and for the metagenomics analysis are available on GitHub at https://github.com/maalcantar/eLBP-prevents-dysbiosis-16s-analysis and https://github.com/maalcantar/eLBP-prevents-dysbiosis-metagenomics-analysis.

References

  1. Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karachalios, G. & Charalabopoulos, K. Biliary excretion of antimicrobial drugs. Chemotherapy 48, 280–297 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Ghibellini, G., Leslie, E. M. & Brouwer, K. L. Methods to evaluate biliary excretion of drugs in humans: an updated review. Mol. Pharm. 3, 198–211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stecher, B., Maier, L. & Hardt, W. D. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 11, 277–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 11, 4379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Investig. 124, 4212–4218 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. WHO Report on Surveillance of Antibiotic Consumption: 2016–2018 Early Implementation (World Health Organization, 2018).

  9. Draper, K., Ley, C. & Parsonnet, J. Probiotic guidelines and physician practice: a cross-sectional survey and overview of the literature. Benef. Microbes 8, 507–519 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Hempel, S. et al. Safety of probiotics to reduce risk and prevent or treat disease. Evid. Rep. Technol. Assess. 200, 1–645 (2011).

    Google Scholar 

  12. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Bermudez-Humaran, L. G. et al. Engineering lactococci and lactobacilli for human health. Curr. Opin. Microbiol. 16, 278–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Fisher, J. F. & Mobashery, S. β-Lactam resistance mechanisms: Gram-positive bacteria and Mycobacterium tuberculosis. Cold Spring Harb. Perspect. Med. 6, a025221 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wright, G. D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev. 57, 1451–1470 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 62, e01076–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bush, K. & Bradford, P. A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 33, e00047–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teuber, M. in The Genera of Lactic Acid Bacteria (eds Wood, B. J. B. & Holzapfel, W. H.) 173–234 (Springer, 1995).

  19. Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, C. et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 10, 2235–2245 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Galarneau, A., Primeau, M., Trudeau, L.-E. & Michnick, S. W. β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nat. Biotechnol. 20, 619–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nielsen, J. B. & Lampen, J. O. Membrane-bound penicillinases in Gram-positive bacteria. J. Biol. Chem. 257, 4490–4495 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Schubert, A. M., Sinani, H. & Schloss, P. D. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. mBio 6, e00974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crobach, M. J. T. et al. Understanding Clostridium difficile colonization. Clin. Microbiol Rev. 31, e00021–17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Wong, J. M. W., de Souza, R., Kendall, C. W. C., Emam, A. & Jenkins, D. J. A. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045–15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewis, B. B., Carter, R. A. & Pamer, E. G. Bile acid sensitivity and in vivo virulence of clinical Clostridium difficile isolates. Anaerobe 41, 32–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz, D. J., Langdon, A. E. & Dantas, G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 12, 82 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Harmoinen, J. et al. Enzymic degradation of a β-lactam antibiotic, ampicillin, in the gut: a novel treatment modality. J. Antimicrob. Chemother. 51, 361–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Kaleko, M. et al. Development of SYN-004, an oral β-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection. Anaerobe 41, 58–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Kokai-Kun, J. F. et al. Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect. Dis. 19, 487–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Mao, N., Cubillos-Ruiz, A., Cameron, D. E. & Collins, J. J. Probiotic strains detect and suppress cholera in mice. Sci. Transl. Med. 10, eaao2586 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Edwards, A. N. & McBride, S. M. Isolating and purifying clostridium difficile spores. Methods Mol. Biol. 1476, 117–128 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Salverda, M. L., De Visser, J. A. & Barlow, M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 34, 1015–1036 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 1276–1281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Theriot, C. M. et al. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes 2, 326–334 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Winston, J. A., Thanissery, R., Montgomery, S. A. & Theriot, C. M. Cefoperazone-treated mouse model of clinically-relevant Clostridium difficile strain R20291. J. Vis. Exp. 10, 54850 (2016).

    Google Scholar 

  46. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  56. Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).

    PubMed  Google Scholar 

  57. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  58. Joshi, N. A. & Fass, J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. https://github.com/najoshi/sickle (2011).

  59. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Parnanen, K. et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 9, 3891 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer Science & Business Media, 2013).

  63. Miller, R. G. in Simultaneous Statistical Inference (ed. Miller, R. G.) 1–35 (Springer, 1981).

  64. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Graveline for help with the animal protocol setup and A. Vernet and M. Sanchez-Ventura for assistance with animal experiments. We thank X. Tan, M. A. English, R. Gayet, D. Morales and J. Cubillos-Ruiz for helpful comments and discussions. We also thank K. Pärnänen for helpful discussion on metagenomic data processing and calculating antibiotic resistance gene abundances from metagenomic data. Additionally, we thank S. Blomquist for help with running analysis pipelines via the Commonwealth Computational Cloud for Data Driven Biology (C3DDB) cluster. This work was supported by funding from the Defense Threat Reduction Agency grant HDTRA1-14-1-0006 (to J.J.C.), Wyss Institute funding (to J.J.C.) and the Paul G. Allen Frontiers Group (to J.J.C.) and Wyss Institute validation project funding (to A.C.-R.). M.A.A. was supported by a National Science Foundation graduate research fellowship (award no. 1122374).

Author information

Authors and Affiliations

Authors

Contributions

A.C.-R. conceptualized the project, designed and performed experiments, analysed and interpreted data, acquired funding and wrote the manuscript. N.M.D. and J.A.-P. performed experiments; M.A.A. analysed data, performed experiments and wrote the manuscript; P.C. and J.A.-P. analysed data; and J.J.C. supervised the work, assisted with manuscript editing and acquired funding.

Corresponding author

Correspondence to James J. Collins.

Ethics declarations

Competing interests

J.J.C. is co-founder and SAB chair of Synlogic and EnBiotix. A.C.-R. and J.J.C. have filed a patent application for this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Peter Turnbaugh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic of the antibiotic survival landscape of the bacterial strains in this study.

a. In wildtype cells, the survival to the antibiotic is dictated by the minimum inhibitory concentration (MIC), which is the lowest concentration of an antibiotic that achieves inhibition of growth. In a population of antibiotic-sensitive cells, the landscape partition between survival and death is independent of cell density. b. Antimicrobial resistance factors (that is, native β-lactamase) decrease the susceptibility of the bacterial cell to the antibiotic, increasing the MIC. In a population of antibiotic-resistant cells, the partition between survival and death is also independent of cell density. c. Density-dependent survival effect in spTEM1-expressing strains. Secretion and extracellular assembly of the spTEM1 β-lactamase preclude self-protection in producer cells and makes the partition of the antibiotic survival landscape a function of the cell density. Below the critical cell density threshold, the engineered cells are as susceptible to the antibiotic as wildtype cells. Above the cell density threshold, the engineered cells can survive the antibiotic to the same extent as their neighboring cells, offering population-wide protection.

Extended Data Fig. 2 Determination of L. lactis load in the mouse intestine.

a. Treatment regimen. Mice were orally gavaged with two doses of 1010 CFU of L. lactis. The first dose occurred 2 hours prior to the ampicillin injection and the second simultaneous with the 200 mg/kg ampicillin injection. Intestinal load was evaluated each day for L. lactis spTEM1 and the empty-vector control strain L. lactis EV. b. Enumeration of viable L. lactis cells in feces in each day of treatment demonstrates no difference in the fecal loads of L. lactis spTEM1 (n = 8) and L. lactis EV (n = 8). Box plots display minimum, 25th percentile, median, 75th percentile, and maximum of biological replicate measurements. Unpaired two-sided Wilcoxon test: Day 1, p = 0.7944; Day 2, p = 0.0511; Day 3, p = 0.4093.

Extended Data Fig. 3 Detection of β-lactamase activity in fecal samples of ampicillin-naïve mice.

a. Fecal samples were collected 2 hours after a single dose of L. lactis spTEM1 or delivery vehicle control. b. Nitrocefin hydrolysis assay for the detection of β-lactamase activity. Means and standard deviations of biological replicates are shown. n = 10 mice in the L. lactis spTEM1 and control groups.

Extended Data Fig. 4 Mouse model for parenteral ampicillin-induced dysbiosis and the disruption of colonization resistance against C. difficile.

a. A 3-day intraperitoneal ampicillin administration regimen is evaluated for its effects in abolishing colonization resistance against 5×103 spores of C. difficile at 24 hours after the last ampicillin dose. C. difficile density in feces is evaluated 24 hours after the infection. b. Evaluation of single- or double-dose (8 hours apart) administration regimens for intraperitoneal ampicillin injection indicates that a single dose of ampicillin for 3 days is enough to sensitize the mouse gut to robust C. difficile colonization. n = 5 mice in each treatment group. Means and standard deviations of biological replicates are shown. c. Dose-dependency of single daily intraperitoneal ampicillin injections in the disruption of colonization resistance against C. difficile. n = 5 mice in each treatment group. Means and standard deviations of biological replicates are shown.

Extended Data Fig. 5 Diversity and composition of the gut microbiota during the experiment of preservation of colonization resistance against C. difficile.

a. Determination of the Shannon diversity index for gut microbial communities in mice pre- and post-treatment. The p-values correspond to FDR-corrected Wilcoxon tests between the groups that received L. lactis spTEM1 and L. lactis EV. Adjusted P-values below boxes correspond to FDR-corrected two-sided Wilcoxon tests comparing diversity values against baseline diversity at the pre-treatment timepoint. Box plots display minimum, 25th percentile, median, 75th percentile, and maximum of biological replicate measurements. n = 8 mice in each treatment group. b. Principal coordinates analysis of gut microbial communities in ampicillin-treated mice receiving L. lactis spTEM1 and L. lactis EV control reveals differences in the resulting composition of the community. Close clustering to pre-ampicillin conditions indicates smaller alterations in the community structure. n = 8 mice in each treatment group.

Extended Data Fig. 6 Metagenomic analysis of antimicrobial resistance genes (ARG) during the experiment of preservation of colonization resistance against C. difficile.

a. Analysis of the abundance of ARG reveals significant enrichment in ampicillin-treated mice receiving L. lactis EV but not in mice receiving L. lactis spTEM1. Stacked bar data are presented as reads mapping the different CARD database categories and normalized to the size of the read pool in each sample. Vector-derived ARG in the β-lactam and chloramphenicol classes are presented as a different category to differentiate them from endogenous ARG. Adjusted p-values were calculated with a negative binomial generalized linear model with Tukey’s post hoc test between spTEM1-treated and EV-treated groups. b. Abundance of endogenous and L. lactis spTEM1-derived β-lactamases in the mouse. Elimination of the ampicillin selective pressure by the spTEM1 β-lactamases reduces the enrichment of endogenous β-lactamases in the mouse gut. Rapid elimination from the system of the spTEM1 gene fragments compared to endogenous β-lactamase genes suggests lack of competitive advantage in the spTEM1 strain. n = 8 mice in each L. lactis spTEM1 and L. lactis EV groups. p-value significance corresponds to FDR-corrected two-sided Wilcoxon tests comparing ARG abundance values against baseline values at the pre-treatment timepoint. Means and standard deviations of biological replicates are shown.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Tables 1–3.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cubillos-Ruiz, A., Alcantar, M.A., Donghia, N.M. et al. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng 6, 910–921 (2022). https://doi.org/10.1038/s41551-022-00871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00871-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research