Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic checkpoint-blockade and radiotherapy–radiodynamic therapy via an immunomodulatory nanoscale metal–organic framework

An Author Correction to this article was published on 11 November 2022

This article has been updated

Abstract

Checkpoint blockade elicits durable responses in immunogenic cancers, but it is largely ineffective in immunologically ‘cold’ tumours. Here we report the design, synthesis and performance of a bismuth-based nanoscale metal–organic framework that modulates the immunological and mechanical properties of the tumour microenvironment for enhanced radiotherapy–radiodynamic therapy. In mice with non-immunogenic prostate and pancreatic tumours irradiated with low X-ray doses, the intratumoural injection of the radiosensitizer mediated potent outcomes via the repolarization of immunosuppressive M2 macrophages into immunostimulatory M1 macrophages, the reduction of the concentration of intratumoural transforming growth factor beta (TGF-β) and of collagen density, and the inactivation of cancer-associated fibroblasts. When intravenously injected in combination with checkpoint-blockade therapy, the radiosensitizer mediated the reversal of immunosuppression in primary and distant tumours via the systemic reduction of TGF-β levels, which led to the downregulation of collagen expression, the stimulation of T-cell infiltration in the tumours and a robust abscopal effect. Nanoscale radiosensitizers that stimulate anti-tumour immunity and T-cell infiltration may enhance the therapeutic outcomes of checkpoint blockade in other tumour types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization and radiosensitization of Bi-DBP.
Fig. 2: Bi-DBP-mediated radiosensitization and immunogenic cell death.
Fig. 3: In vivo radiosensitization and biomechanical modulation mediated by Bi-DBP.
Fig. 4: Abscopal effect and anti-tumour immunity mediated by Bi-DBP.
Fig. 5: Reversal of systemic immunosuppression via modulated biomechanics.
Fig. 6: Scheme of Bi-DBP-mediated RT–RDT modulated biomechanics to promote T-cell infiltration.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for Figs. 3 and 4 are provided with this paper. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding author on reasonable request.

Change history

References

  1. Blankenstein, T., Coulie, P. G., Gilboa, E. & Jaffee, E. M. The determinants of tumour immunogenicity. Nat. Rev. Cancer 12, 307–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beer, T. M. et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 35, 40–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Martinez-Bosch, N., Vinaixa, J. & Navarro, P. Immune evasion in pancreatic cancer: from mechanisms to therapy. Cancers 10, 6 (2018).

    Article  PubMed Central  Google Scholar 

  5. Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y.-X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, G. et al. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc. Natl Acad. Sci. USA 104, 8989–8994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, Z., Song, J., Nie, L. & Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 45, 6597–6626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siva, S., MacManus, M. P., Martin, R. F. & Martin, O. A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 356, 82–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Wan, C. et al. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci. Adv. 6, eaay9789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nam, J. et al. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019).

    Article  Google Scholar 

  12. Chen, H. et al. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Lett. 15, 2249–2256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sang, W., Zhang, Z., Dai, Y. & Chen, X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. 48, 3771–3810 (2019).

    Article  PubMed  Google Scholar 

  14. Luo, M. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12, 648–654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, W., He, C. & Lu, K. Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, chemotherapy, immunotherapy, and any combination thereof. US patent US201462063770P (2014).

  17. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  18. Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. He, C., Liu, D. & Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 115, 11079–11108 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Morris, W., Briley, W. E., Auyeung, E., Cabezas, M. D. & Mirkin, C. A. Nucleic acid–metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 136, 7261–7264 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, S., McGuirk, C. M., d’Aquino, A., Mason, J. A. & Mirkin, C. A. Metal–organic framework nanoparticles. Adv. Mater. 30, 1800202 (2018).

    Article  Google Scholar 

  24. Wang, C. et al. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal–organic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc. 136, 6171–6174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dougherty, T. J. et al. Photodynamic therapy. J. Natl Cancer Inst. 90, 889–905 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Garg, A. D., Nowis, D., Golab, J. & Agostinis, P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis 15, 1050–1071 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Rabin, O., Perez, J. M., Grimm, J., Wojtkiewicz, G. & Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Mendoza-Espinosa, D. Synthesis and characterization of a Bi10O8(OAr)16 oxo-cluster supported by p-tert-butylcalix[5]arene ligands. Dalton Trans. 45, 13399–13405 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Andrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & MacLellan, J. G. Synthesis, ethanolysis, and hydrolysis of bismuth (III) ortho-nitrobenzoate complexes en route to a pearl necklace-like polymer of Bi10 oxo-clusters. Organometallics 28, 3999–4008 (2009).

    Article  CAS  Google Scholar 

  30. Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R. & Coyle, A. J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Aymeric, L. et al. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res. 70, 855–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Gingrich, J. R. et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 56, 4096–4102 (1996).

    CAS  PubMed  Google Scholar 

  34. Tang, Y. et al. Divergent effects of castration on prostate cancer in TRAMP mice: possible implications for therapy.Clin. Cancer Res. 14, 2936–2943 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Michaelis, K. A. et al. Establishment and characterization of a novel murine model of pancreatic cancer cachexia. J. Cachexia Sarcopenia Muscle 8, 824–838 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chauhan, V. P. et al. Reprogramming the microenvironment with tumor-selective angiotensin blockers enhances cancer immunotherapy. Proc. Natl Acad. Sci. USA 116, 10674–10680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan, H.-Y. et al. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longev. 2016, 2795090 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl Acad. Sci. USA 106, 14978–14983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gu, Z. et al. Mechanism of iron oxide-induced macrophage activation: the impact of composition and the underlying signaling pathway. J. Am. Chem. Soc. 141, 6122–6126 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Bosi, S., Da Ros, T., Spalluto, G. & Prato, M. Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 38, 913–923 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Ni, K. et al. Nanoscale metal–organic framework co-delivers TLR-7 agonists and anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.0c05039 (2020).

  43. Martin, C. J. et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci. Transl. Med. 12, 536 (2020).

    Article  Google Scholar 

  44. Zinger, A. et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 13, 11008–11021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Papageorgis, P. & Stylianopoulos, T. Role of TGFbeta in regulation of the tumor microenvironment and drug delivery (review). Int. J. Oncol. 46, 933–943 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, F. et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7, 52294–52306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rubtsov, Y. P. & Rudensky, A. Y. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol. 7, 443–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat. Immunol. 6, 600–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Irvine, D. J., Hanson, M. C., Rakhra, K. & Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115, 11109–11146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carstens, J. L. et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 8, 15095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller, M. A. & Weissleder, R. Imaging of anticancer drug action in single cells. Nat. Rev. Cancer 17, 399–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nam, J. et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9, 1074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tyekucheva, S. et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat. Commun. 8, 420 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhou, H. et al. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 9, 7976–7991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao, N. et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics 7, 1689–1704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, Y. et al. Dual-mechanism based CTLs infiltration enhancement initiated by nano-sapper potentiates immunotherapy against immune-excluded tumors. Nat. Commun. 11, 622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu, M., Song, W. & Huang, L. Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy. Cancer Lett. 448, 31–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Miao, L. et al. The binding site barrier elicited by tumor-associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano 10, 9243–9258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miao, L. et al. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res. 77, 719–731 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Song for experimental help; the late O. Schneewind of the Department of Microbiology at the University of Chicago for help with the macrophage repolarization studies; and the National Cancer Institute (U01–CA198989 and 1R01CA253655), the Department of Defense (PC170934P2), the University of Chicago Medicine Comprehensive Cancer Center (NIH CCSG: P30 CA014599) and the Ludwig Institute for Metastasis Research for funding support.

Author information

Authors and Affiliations

Authors

Contributions

K.N. and W.L. conceived the project. K.N., Z.X., A.C. and T.L. performed the experiments and analysed the results. E.P., B.P. and P.L.R. performed the radioluminescence test, and N.G. and T.W. assisted with the qPCR analysis. M.T.S. and N.G. generated the spontaneous TRAMP model. N.G. and K.Y. performed intraprostatic injection. K.N., Z.X., A.C., R.R.W., M.T.S. and W.L. wrote the manuscript.

Corresponding author

Correspondence to Wenbin Lin.

Ethics declarations

Competing interests

W.L. is founder of Coordination Pharmaceuticals, which licensed the nMOF technology from the University of Chicago. R.R.W. is a consultant to Coordination Pharmaceuticals. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Structure of Bi10O8 SBUs.

Views of Bi10O8 SBUs in Bi-BPDC along the crystallographic a-axis or b-axis (a) and c-axis (b). Purple: bismuth; red: oxygen; blue: nitrogen; grey: carbon.

Extended Data Fig. 2 Crystal structure of Bi-DBP.

Modelled crystal structures of Bi-DBP projected along the a-axis (a), the b-axis (b), and the c-axis (c) and Bi10O8 SBU (d). Purple: bismuth; red: oxygen; blue: nitrogen; grey: carbon.

Extended Data Fig. 3 Immune profiling on bilateral TRAMP-C2 model.

Percentages of tumour-infiltrating leucocytes with respect to the total live cells from TRAMP-C2 tumour-bearing mice treated with PBS (–), PBS (+), aPD-L1 (+), Bi-DBP (+), Bi-DBP (–) + αPD-L1, or Bi-DBP (+) + αPD-L1. Data are expressed as means ± s.d., n = 5 for biological replicates. P-value by two-sided student t-test. Central lines, bounds of box and whiskers represent mean values, 25% to 75% of the range of data and 1.5-fold of interquartile range away from outliers, respectively. The result was obtained without repetition.

Supplementary information

Supplementary Information

Supplementary methods, figures and tables.

Reporting Summary

Source data

Source data for Fig. 3

Tumour-growth data in Fig. 3a,b.

Source data for Fig. 4

Tumour-growth data in Fig. 4a,b,d,e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, K., Xu, Z., Culbert, A. et al. Synergistic checkpoint-blockade and radiotherapy–radiodynamic therapy via an immunomodulatory nanoscale metal–organic framework. Nat Biomed Eng 6, 144–156 (2022). https://doi.org/10.1038/s41551-022-00846-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00846-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer