Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetically engineered and enucleated human mesenchymal stromal cells for the targeted delivery of therapeutics to diseased tissue

Abstract

Targeting the delivery of therapeutics specifically to diseased tissue enhances their efficacy and decreases their side effects. Here we show that mesenchymal stromal cells with their nuclei removed by density-gradient centrifugation following the genetic modification of the cells for their display of chemoattractant receptors and endothelial-cell-binding molecules are effective vehicles for the targeted delivery of therapeutics. The enucleated cells neither proliferate nor permanently engraft in the host, yet retain the organelles for energy and protein production, undergo integrin-regulated adhesion to inflamed endothelial cells, and actively home to chemokine gradients established by diseased tissues. In mouse models of acute inflammation and of pancreatitis, systemically administered enucleated cells expressing two types of chemokine receptor and an endothelial adhesion molecule enhanced the delivery of an anti-inflammatory cytokine to diseased tissue (with respect to unmodified stromal cells and to exosomes derived from bone-marrow-derived stromal cells), attenuating inflammation and ameliorating disease pathology. Enucleated cells retain most of the cells’ functionality, yet acquire the cargo-carrying characteristics of cell-free delivery systems, and hence represent a versatile delivery vehicle and therapeutic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enucleated cells retain important cellular functions.
Fig. 2: Cargocytes have chemotaxis activities and migrate better through confined spaces.
Fig. 3: Cargocytes interact with adhesion molecules.
Fig. 4: Bioengineered cargocytes actively and specifically home to the inflamed ear.
Fig. 5: Bioengineered cargocytes efficiently deliver bioactive IL-10 to inflamed ears and ameliorate local inflammation.
Fig. 6: Bioengineered cargocytes ameliorate Caerulein-induced acute pancreatitis.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Yoo, J. W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10, 521–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Lyerly, H. K., Osada, T. & Hartman, Z. C. Right time and place for IL12: targeted delivery stimulates immune therapy. Clin. Cancer Res. 25, 9–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Fioranelli, M. & Roccia, M. G. Twenty-five years of studies and trials for the therapeutic application of IL-10 immunomodulating properties. From high doses administration to low dose medicine new paradigm. J. Integr. Cardiol. 1, 2–6 (2014).

    Google Scholar 

  5. Samanta, S. et al. Exosomes: new molecular targets of diseases. Acta Pharmacol. Sin. 39, 501–513 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Han, X., Wang, C. & Liu, Z. Red blood cells as smart delivery systems. Bioconjugate Chem. 29, 852–860 (2018).

    Article  CAS  Google Scholar 

  7. Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Thanuja, M. Y., Anupama, C. & Ranganath, S. H. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv. Drug Deliv. Rev. 132, 57–80 (2018).

    Article  CAS  Google Scholar 

  9. Labusca, L., Herea, D. D. & Mashayekhi, K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J. Stem Cells 10, 43–56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sackstein, R. The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Curr. Opin. Hematol. 12, 444–450 (2005).

    Article  PubMed  Google Scholar 

  11. Nitzsche, F. et al. Concise review: MSC adhesion cascade–insights into homing and transendothelial migration. Stem Cells 35, 1446–1460 (2017).

    Article  PubMed  Google Scholar 

  12. Ullah, M., Liu, D. D. & Thakor, A. S. Mesenchymal stromal cell homing: mechanisms and strategies for improvement. iScience 15, 421–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fischer, U. M. et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 18, 683–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Karp, J. M. & Leng Teo, G. S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4, 206–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Galipeau, J. & Sensebe, L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22, 824–833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marks, P. W., Witten, C. M. & Califf, R. M. Clarifying stem-cell therapy’s benefits and risks. N. Engl. J. Med. 376, 1007–1009 (2017).

    Article  PubMed  Google Scholar 

  17. Wigler, M. H. & Weinstein, I. B. A preparative method for obtaining enucleated mammalian cells. Biochem. Biophys. Res. Commun. 63, 669–674 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. Shay, J. W. Cell enucleation, cybrids, reconstituted cells, and nuclear hybrids. Methods Enzymol. 151, 221–237 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Coimbra, V. C. et al. Enucleated L929 cells support invasion, differentiation, and multiplication of Trypanosoma cruzi parasites. Infect. Immun. 75, 3700–3706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graham, D. M. et al. Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J. Cell Biol. 217, 895–914 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolbank, S. et al. Telomerase immortalized human amnion- and adipose-derived mesenchymal stem cells: maintenance of differentiation and immunomodulatory characteristics. Tissue Eng. Part A 15, 1843–1854 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Malawista, S. E., Van Blaricom, G. & Breitenstein, M. G. Cryopreservable neutrophil surrogates. Stored cytoplasts from human polymorphonuclear leukocytes retain chemotactic, phagocytic, and microbicidal function. J. Clin. Invest. 83, 728–732 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keys, J., Windsor, A. & Lammerding, J. Assembly and use of a microfluidic device to study cell migration in confined environments. Methods Mol. Biol. 1840, 101–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Lammerding, J. Mechanics of the nucleus. Compr. Physiol. 1, 783–807 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guilak, F., Tedrow, J. R. & Burgkart, R. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781–786 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Stewart-Hutchinson, P. J., Hale, C. M., Wirtz, D. & Hodzic, D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell. Res. 314, 1892–1905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caille, N., Thoumine, O., Tardy, Y. & Meister, J. J. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177–187 (2002).

    Article  PubMed  Google Scholar 

  28. Marquez-Curtis, L. A. & Janowska-Wieczorek, A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed. Res. Int. 2013, 561098 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pandolfi, F. et al. Integrins: integrating the biology and therapy of cell–cell interactions. Clin. Ther. 39, 2420–2436 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Chigaev, A. et al. Real time analysis of the affinity regulation of alpha 4-integrin. The physiologically activated receptor is intermediate in affinity between resting and Mn(2+) or antibody activation. J. Biol. Chem. 276, 48670–48678 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Boltze, J. et al. The dark side of the force – constraints and complications of cell therapies for stroke. Front. Neurol. 6, 155 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jung, J. W. et al. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med. J. 54, 1293–1296 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bartosh, T. J. et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl Acad. Sci. USA 107, 13724–13729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levy, O. et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood 122, e23–e32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gordon, S. et al. Antigen markers of macrophage differentiation in murine tissues. Curr. Top. Microbiol. Immunol. 181, 1–37 (1992).

    CAS  PubMed  Google Scholar 

  36. Devine, M. J., Mierisch, C. M., Jang, E., Anderson, P. C. & Balian, G. Transplanted bone marrow cells localize to fracture callus in a mouse model. J. Orthop. Res. 20, 1232–1239 (2002).

    Article  PubMed  Google Scholar 

  37. Ignowski, J. M. & Schaffer, D. V. Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol. Bioeng. 86, 827–834 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Alvarez, H. M. et al. Effects of PEGylation and immune complex formation on the pharmacokinetics and biodistribution of recombinant interleukin 10 in mice. Drug Metab. Dispos. 40, 360–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Greenberg, J. A. et al. Clinical practice guideline: management of acute pancreatitis. Can. J. Surg. 59, 128–140 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Forsmark, C. E., Vege, S. S. & Wilcox, C. M. Acute Pancreatitis. N. Engl. J. Med. 375, 1972–1981 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Niederau, C., Ferrell, L. D. & Grendell, J. H. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88, 1192–1204 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Su, K. H., Cuthbertson, C. & Christophi, C. Review of experimental animal models of acute pancreatitis. HPB 8, 264–286 (2006).

    Article  PubMed  Google Scholar 

  43. Rongione, A. J. et al. Interleukin 10 reduces the severity of acute pancreatitis in rats. Gastroenterology 112, 960–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. van Laethem, J. L. et al. Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 108, 1917–1922 (1995).

    Article  PubMed  Google Scholar 

  45. Fedorak, R. N. et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119, 1473–1482 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Nowakowski, A., Andrzejewska, A., Janowski, M., Walczak, P. & Lukomska, B. Genetic engineering of stem cells for enhanced therapy. Acta Neurobiol. Exp. 73, 1–18 (2013).

    Google Scholar 

  47. Cui, L. L. et al. The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Res. Ther. 6, 11 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Krueger, T. E. G., Thorek, D. L. J., Denmeade, S. R., Isaacs, J. T. & Brennen, W. N. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl. Med. 7, 651–663 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yin, J. Q., Zhu, J. & Ankrum, J. A. Manufacturing of primed mesenchymal stromal cells for therapy. Nat. Biomed. Eng. 3, 90–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Ungerechts, G. et al. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol. Ther. Methods Clin. Dev. 3, 16018 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen, H., Marino, S. & Ho, C. Y. 97. Large scale purification of AAV with continuous flow ultracentrifugation. Mol. Ther. 24, S42 (2016).

    Article  Google Scholar 

  52. Vazquez-Lombardi, R., Roome, B. & Christ, D. Molecular engineering of therapeutic cytokines. Antibodies 2, 426–451 (2013).

    Article  CAS  Google Scholar 

  53. Wigler, M. H., Neugut, A. I. & Weinstein, I. B. Enucleation of mammalian cells in suspension. Methods Cell. Biol. 14, 87–93 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. Bartosh, T. J. & Ylostalo, J. H. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. Curr. Protoc. Stem Cell Biol. 28, Unit 2B.6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Frith, J. E., Thomson, B. & Genever, P. G. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng. Part C. Methods 16, 735–749 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Egger, D., Tripisciano, C., Weber, V., Dominici, M. & Kasper, C. Dynamic cultivation of mesenchymal stem cell aggregates. Bioengineering 5, 48 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  57. Davidson, P. M., Sliz, J., Isermann, P., Denais, C. & Lammerding, J. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr. Biol. 7, 1534–1546 (2015).

    Article  CAS  Google Scholar 

  58. Hyduk, S. J. et al. Talin-1 and kindlin-3 regulate alpha4beta1 integrin-mediated adhesion stabilization, but not G protein-coupled receptor-induced affinity upregulation. J. Immunol. 187, 4360–4368 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Semon, J. A. et al. Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels. Cell Tissue Res. 341, 147–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Quah, B. J., Warren, H. S. & Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2, 2049–2056 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Jing, D. et al. Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res. 28, 803–818 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Corradetti, B. et al. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Sci. Rep. 7, 7991 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants (R01 CA097022, CA184594 and CA182495 (R.L.K.) and R01 HL082792, R01 GM137605 and U54 CA210184 (J.L.)), the National Science Foundation (CAREER Award CBET-1254846 to J.L.), the Hartwell Foundation (J.D.B.) and the Center for Drug Discovery and Innovation at UC San Diego (R.L.K.). C.N.A. was supported by NIH 5T32 OD17863-4. Imaging and analysis were in part performed at the UCSD School of Medicine Microscopy Core (NS047101) and UCSD Moores Cancer Center Tissue Technology Shared Resource Core (CCSG Grant P30CA23100). Human primary bone marrow MSCs were obtained from Texas A&M Health Science Center College of Medicine Institute for Regenerative Medicine (NIH P40OD011050). This work was performed in part at the Cornell NanoScale Science & Technology Facility (CNF), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (Grant NNCI-2025233). We thank Dr W. Zhao and Dr A. Ségaliny of UC Irvine, and D. Thomas, Dr L. de Siqueira Neto, Dr M. Ruchhoeft and Dr L. Zhao of UCSD for thoughtful discussion.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and R.L.K. designed and supervised the project. H.W., C.N.A., B.L., F.W., S.S., C.K.L., J.K., W.P. and D.A. performed the experiments. H.W., C.N.A., S.S. and J.K. analysed the data. C.N.A. read the blinded histology. H.W., C.N.A. and R.L.K. wrote the paper. J.D.B. and J.L. revised the paper.

Corresponding author

Correspondence to Richard L. Klemke.

Ethics declarations

Competing interests

Cargocyte is the trademark of Cytonus Therapeutics. R.L.K. is the co-founder and equity holder of Cytonus Therapeutics. H.W. and R.L.K. are co-inventors of a related patent (WO 2019/032628 A1, US 10,927,349 B2) and H.W., W.P. and R.L.K. are co-inventors of another related patent (PCT/US21/016,919). Both patents were filed by UCSD.

Additional information

Peer review information Nature Biomedical Engineering thanks Zhen Gu, Di Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Video

Cargocyteslifeact-RFP treated as in Fig. 2d and allowed to move through constrictions along an FBS gradient in a microfluidic device.

Video

MSClifeact-RFP treated as in Fig. 2d and allowed to move through constrictions along an FBS gradient in a microfluidic device.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Alarcón, C.N., Liu, B. et al. Genetically engineered and enucleated human mesenchymal stromal cells for the targeted delivery of therapeutics to diseased tissue. Nat. Biomed. Eng 6, 882–897 (2022). https://doi.org/10.1038/s41551-021-00815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00815-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research