Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles

Abstract

Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Systematic screening of multiple endogenous EV display strategies for cytokine decoys.
Fig. 2: Multimerization of decoy fusion proteins improves loading and activity.
Fig. 3: Multimeric decoy receptor EV-sorting protein chimaera is functionalized on several EV subpopulations.
Fig. 4: Benchmarking engineered decoy EVs against clinically approved biologics both in vitro and in vivo.
Fig. 5: Targeting the TNF-α, IL-6 and IL-23 signalling axes with engineered decoy EVs suppresses neuroinflammation.
Fig. 6: Dual-functionalized engineered EVs protect against intestinal inflammation.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets are available at Figshare (https://figshare.com/projects/Raw_and_Analysed_data_Gupta_et_al_NBME_2021/119859).

References

  1. Armstrong, J. P. K., Holme, M. N. & Stevens, M. M. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano 11, 69–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. El-Andaloussi, S. et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat. Protoc. 7, 2112–2126 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Wiklander, O. P. B. et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles https://doi.org/10.3402/jev.v4.26316 (2015).

  5. Cooper, J. M. et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 29, 1476–1485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willms, E. et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 6, 22519 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vagner, T. et al. Protein composition reflects extracellular vesicle heterogeneity. Proteomics 19, 1800167 (2019).

    Article  CAS  Google Scholar 

  9. Crescitelli, R. et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J. Extracell. Vesicles 9, 1722433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, E. Y. & Moudgil, K. D. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine 98, 87–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moudgil, K. D. & Choubey, D. Cytokines in autoimmunity: role in induction, regulation, and treatment. J. Interferon Cytokine Res. 31, 695–703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garbers, C., Heink, S., Korn, T. & Rose-John, S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov. 17, 395–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 12, 49–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Sedger, L. M. & McDermott, M. F. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev. 25, 453–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Wolf, J., Rose-John, S. & Garbers, C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 70, 11–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Simpson, R. J., Kalra, H. & Mathivanan, S. Exocarta as a resource for exosomal research. J. Extracell. Vesicles 1, 18374 (2012).

    Article  CAS  Google Scholar 

  17. Hurwitz, S. N. et al. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 7, 86999–87015 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sork, H. et al. Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sci. Rep. 8, 10813 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Xanthoulea, S. et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J. Exp. Med. 200, 367–376 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meier, S., Güthe, S., Kiefhaber, T. & Grzesiek, S. Foldon, the natural trimerization domain of T4 fibritin, dissociates into a monomeric A-state form containing a stable β-hairpin: atomic details of trimer dissociation and local β-hairpin stability from residual dipolar couplings. J. Mol. Biol. 344, 1051–1069 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Ellenberger, T. E., Brandl, C. J., Struhl, K. & Harrison, S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: crystal structure of the protein-DNA complex. Cell 71, 1223–1237 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Jensen, M. R. et al. Structural description of the nipah virus phosphoprotein and its interaction with stat1. Biophys. J. https://doi.org/10.1016/j.bpj.2020.04.010 (2020).

  23. Sliepen, K., van Montfort, T., Melchers, M., Isik, G. & Sanders, R. W. Immunosilencing a highly immunogenic protein trimerization domain. J. Biol. Chem. 290, 7436–7442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol. Ther. 29, 1729–1743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wiklander, O. P. B. et al. Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. Front. Immunol. 9, 1326 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pelosi, L. et al. Increased levels of interleukin-6 exacerbate the dystrophic phenotype in mdx mice. Hum. Mol. Genet. 24, 6041–6053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saleh, A. F. et al. Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale 11, 6990–7001 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, X. et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles 6, 1324730 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sejwal, K. et al. Proteoliposomes—a system to study membrane proteins under buffer gradients by cryo-EM. Nanotechnol. Rev. 6, 57–74 (2017).

    Article  CAS  Google Scholar 

  31. Gupta, D. et al. Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging. J. Extracell. Vesicles 9, 1800222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Desmet, J. et al. Structural basis of IL-23 antagonism by an Alphabody protein scaffold. Nat. Commun. 5, 5237 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Göbel, K., Ruck, T. & Meuth, S. G. Cytokine signaling in multiple sclerosis: lost in translation. Mult. Scler. 24, 432–439 (2018).

    Article  PubMed  CAS  Google Scholar 

  34. Görgens, A. et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell. Vesicles 8, 1587567 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Reshke, R. et al. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-019-0502-4 (2020).

  36. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corso, G. et al. Systematic characterization of extracellular vesicle sorting domains and quantification at the single molecule—single vesicle level by fluorescence correlation spectroscopy and single particle imaging. J. Extracell. Vesicles 8, 1663043 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, X. et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med. 10, eaat0195 (2018).

    Article  PubMed  CAS  Google Scholar 

  39. Wiklander, O. P. B., Brennan, M., Lötvall, J., Breakefield, X. O. & Andaloussi, S. E. L. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11, 8521 (2019).

    Article  CAS  Google Scholar 

  40. Rayamajhi, S. & Aryal, S. Surface functionalization strategies of extracellular vesicles. J. Mater. Chem. B 8, 4552–4569 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Fang, Y. et al. Higher-order oligomerization targets plasma membrane proteins and HIV Gag to exosomes. PLoS Biol. 5, e158 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Conceição, M. et al. Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials 266, 120435 (2021).

    Article  PubMed  CAS  Google Scholar 

  44. Lai, C. P. et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8, 483–494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perets, N. et al. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 19, 3422–3431 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Keller, M. D. et al. Decoy exosomes provide protection against bacterial toxins. Nature 579, 260–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Carvalho, J. V. et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS ONE 9, e113691 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Corso, G. et al. Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci. Rep. 7, 11561 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tertel, T. et al. High-resolution imaging flow cytometry reveals impact of incubation temperature on labelling of extracellular vesicles with antibodies. Cytometry A 97, 602–609 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Brkic, M. et al. Amyloid β oligomers disrupt blood–CSF barrier integrity by activating matrix metalloproteinases. J. Neurosci. 35, 12766–12778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Raduolovic, K., Mak’Anyengo, R., Kaya, B., Steinert, A. & Niess, J. H. Injections of lipopolysaccharide into mice to mimic entrance of microbial-derived products after intestinal barrier breach. J. Vis. Exp. https://doi.org/10.3791/57610 (2018).

  52. Scheiffele, F. & Fuss, I. J. Induction of TNBS colitis in mice. Curr. Protoc. Immunol. https://doi.org/10.1002/0471142735.im1519s49 (2002).

Download references

Acknowledgements

We acknowledge B. Vanneste and G. Van Imschoot for their assistance. A.G. is an International Society for Advancement of Cytometry Marylou Ingram Scholar 2019–2023. S.E.-A. is supported by H2020 EXPERT, the Swedish foundation of Strategic Research (SSF-IRC; FormulaEx), ERC CoG (DELIVER) and the Swedish Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

S.E.-A. conceived the idea. D.G., O.P.B.W., J.Z.N. and S.E.-A. designed the research. D.G., Y.S. and J.Z.N. designed the genetic constructs and performed the cloning. D.G., O.P.B.W., A.G., M.C., G.C., X.L., Y.S., U.F., B.B., R.J., D.R.M., Y.X.F.L., M.G., D.K.M. and H.S. performed the in vitro experiments. D.G., O.P.B.W., S.B. and A.B. performed the in vivo experiments. D.G., O.P.B.W. and J.Z.N. analysed the results. J.H., I.M., T.C.R., P.L., A.d.F., C.I.E.S., M.J.A.W., R.E.V. and S.E.-A. provided input on experimental plan and discussion of results. D.G. wrote the manuscript with input from all of the co-authors. J.Z.N. and S.E.-A. co-led the study.

Corresponding authors

Correspondence to Dhanu Gupta, Oscar P. B. Wiklander, Joel Z. Nordin or Samir El-Andaloussi.

Ethics declarations

Competing interests

M.J.A.W. and S.E.-A. are founders of and consultants for Evox Therapeutics. D.G., O.P.B.W., A.G. and J.Z.N. are consultants for Evox Therapeutics. D.G., O.P.B.W., A.G., J.Z.N., M.J.A.W., P.L., A.d.F. and S.E.-A. have stock interest in Evox Therapeutics. J.H., P.L. and A.d.F. are employees of Evox Therapeutics. The other authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Ke Cheng, Gregor Fuhrmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Functionalization of the EV surface with cytokine decoy receptors.

A) Schematic illustration showing the generation of engineered decoy EVs at the cellular level. Producer cells are genetically modified to express cytokine receptors without the signalling domain fused to an EV sorting domain for efficient display of cytokine receptors on the surface of the secreted EVs (decoy EVs), which can decoy cytokines specifically. B-C) Mode size determined by NTA of indicated engineered HEK293T EVs purified from cells transfected with various B) TNFR1 display constructs and C) IL6ST display constructs. Central Value: Mean, Error bars: S.D (Technical replicate, n=5). D) Fold change in signal over untreated HEK293T NF-κB reporter cells, upon incubation of different doses of TNFα for 4 hours. Central Value: Mean, Error bars: S.D (Biological replicate, n= 3). E) Fold change in signal over untreated HEK293T STAT3 reporter cells, upon incubation of different doses of IL-6/sIL-6R for 12 hours. Central Value: Mean, Error bars: S.D (Biological replicate, n= 3).

Extended Data Fig. 2 Amelioration of neuroinflammation by cytokine-decoy-engineered EVs.

Relative mRNA expression of pro inflammatory cytokines determined by qPCR (A) TNFα, (B) IL-6 in the spinal cord at day 16 in mice induced with EAE using MOG35-55 peptide and treated with S.C administration of either 4×1010 MSC TNFR1∆∆-FDN-NST EVs (n= 5) or MSC Ctrl EVs (n= 5) or Saline (n= 5) (On day 7, 10 & 13). For the same dataset as shown in Fig. 5b,c. Central Value: Mean, Error bars: S.D, Statistical significance calculated by one-way ANOVA compared with response of Saline treated animal. C) Relative change in clinical score of disease progression between day 16 and 13 in mice induced with EAE using MOG35-55 peptide and treated with I.V administration of either 1×1010 HEK293T IL-23B-LZ-NST EVs pre symptomatic (On day 5, 7 & 10) or 6×1010 HEK293T IL-23B-LZ-NST EVs post symptomatic (On day 13) or Saline. For the same dataset as shown in Fig. 5h, i. Central Value: Mean, Error bars: S.D, Statistical significance calculated by two-way ANOVA with Dunnett’s post-test compared with response of Saline treated animal.

Extended Data Fig. 3 The surface proteome is unaltered by the dual functionalization of engineered EVs.

A) Imaging flow cytometry analysis (IFCM) with dot plots and example event images in the double positive (DP) gate of MSC TNFR1∆∆-FDN-NST and MSC double decoy EVs stained with mIL6ST APC conjugated and hTNFR1 PE conjugated antibody. PBS + antibodies were used for background adjustment and for determining the gating strategy. B) Multiplex EV surface characterization of PAN (CD63, CD81, and CD9) positive, hTNFR1 positive and mIL6ST positive population in MSC double decoy EVs and MSC Ctrl EVs. Data represented as background corrected median APC fluorescence intensity determined by flow cytometry of EVs bound different capture beads and upon using APC labelled detection antibody. Central Value: Mean, Error bars: S.D, (Technical replicate, n=5000-15000).

Extended Data Fig. 4 Engineered EVs show therapeutic benefit in intestinal inflammation.

A) Increment in EV accumulation in various tissues in animal induced with IBD over healthy animal. B) Change in body weight 24 hours after treatment with different groups in mice induced with TNBS colitis. For the same data set as shown in Fig. 6g, h. C) Survival curve and D) percent change in relative bodyweight to initial weight over the disease course in mice induced with colitis by intrarectal injection of TNBS and treated with I.V administration (at 24 hours post disease induction) of either 3×1011 MSC double decoy EVs (n= 8) or PBS (n= 9).

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Wiklander, O.P.B., Görgens, A. et al. Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nat Biomed Eng 5, 1084–1098 (2021). https://doi.org/10.1038/s41551-021-00792-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00792-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research