Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche

Abstract

Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing Sdf1) or inhibited (when silencing Mcp1) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via Mcp1 silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Composing a BMEC-targeting nanoparticle.
Fig. 2: In vivo uptake of NicheEC-15 nanoparticles in BMECs.
Fig. 3: Effects of siSdf1 silencing on the bone marrow.
Fig. 4: Release of bone marrow monocytes and neutrophils after siSdf1 treatment.
Fig. 5: Effects of siMcp1 treatment during LPS-induced inflammation.
Fig. 6: Effects of siMcp1 treatment on inflammatory cells 24 h after MI.
Fig. 7: Cardiac effects of siMcp1 treatment seven days after MI.
Fig. 8: Therapeutic effects of siMcp1 on cardiac function and anatomy three weeks after MI.

Data availability

The main data supporting the results in this study are available within this paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding authors on reasonable request.

References

  1. 1.

    Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    CAS  PubMed Central  Google Scholar 

  2. 2.

    Mendelson, A. & Frenette, P. S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20, 833–846 (2014).

    CAS  PubMed Central  Google Scholar 

  3. 3.

    Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    CAS  PubMed Central  Google Scholar 

  4. 4.

    Kaplan, R. N., Psaila, B. & Lyden, D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol. Med. 13, 72–81 (2007).

    CAS  PubMed Central  Google Scholar 

  5. 5.

    Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    CAS  PubMed Central  Google Scholar 

  6. 6.

    Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    CAS  PubMed Central  Google Scholar 

  7. 7.

    Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem. Cell 124, 407–421 (2006).

    CAS  PubMed Central  Google Scholar 

  8. 8.

    Gratwohl, A. et al. Hematopoietic stem cell transplantation: a global perspective. JAMA 303, 1617–1624 (2010).

    CAS  PubMed Central  Google Scholar 

  9. 9.

    Giralt, S. et al. Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol. Blood Marrow Transpl. 20, 295–308 (2014).

    Google Scholar 

  10. 10.

    Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction and heart failure. Science 339, 161–166 (2013).

    CAS  PubMed Central  Google Scholar 

  11. 11.

    Calado, R. T. & Young, N. S. Telomere maintenance and human bone marrow failure. Blood 111, 4446–4455 (2008).

    CAS  PubMed Central  Google Scholar 

  12. 12.

    Seo, A. et al. Bone marrow failure unresponsive to bone marrow transplant is caused by mutations in THPO. Blood 130, 875–880 (2017).

    CAS  PubMed Central  Google Scholar 

  13. 13.

    Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    CAS  PubMed Central  Google Scholar 

  14. 14.

    Titze-de-Almeida, R., David, C. & Titze-de-Almeida, S. S. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res. 34, 1339–1363 (2017).

    CAS  Google Scholar 

  15. 15.

    Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    PubMed Central  Google Scholar 

  16. 16.

    Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS  PubMed Central  Google Scholar 

  17. 17.

    Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    CAS  PubMed Central  Google Scholar 

  18. 18.

    Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    CAS  PubMed Central  Google Scholar 

  19. 19.

    Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    CAS  PubMed Central  Google Scholar 

  20. 20.

    Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    CAS  Google Scholar 

  21. 21.

    Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    CAS  Google Scholar 

  22. 22.

    Khan, O. F. et al. Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew. Chem. Int. Ed. 53, 14397–14401 (2014).

    CAS  Google Scholar 

  23. 23.

    Khan, O. F. et al. Dendrimer-inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature. Nano Lett. 15, 3008–3016 (2015).

    CAS  PubMed Central  Google Scholar 

  24. 24.

    Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    CAS  PubMed Central  Google Scholar 

  25. 25.

    Khan, O. F. et al. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. Sci. Adv. 4, eaar8409 (2018).

    PubMed Central  Google Scholar 

  26. 26.

    Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    CAS  Google Scholar 

  27. 27.

    Gref, R. et al. Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces 18, 301–313 (2000).

    CAS  Google Scholar 

  28. 28.

    Owens, D. E. III & Peppas, N. A. Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006).

    CAS  Google Scholar 

  29. 29.

    Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    CAS  PubMed Central  Google Scholar 

  30. 30.

    Xu, C. et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat. Commun. 9, 2449 (2018).

    PubMed Central  Google Scholar 

  31. 31.

    Cheng, M. & Qin, G. Progenitor cell mobilization and recruitment: SDF-1, CXCR4, α4-integrin and c-kit. Prog. Mol. Biol. Transl. Sci. 111, 243–264 (2012).

    CAS  PubMed Central  Google Scholar 

  32. 32.

    Furze, R. C. & Rankin, S. M. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J. 22, 3111–3119 (2008).

    CAS  PubMed Central  Google Scholar 

  33. 33.

    Whitehead, K. A., Dahlman, J. E., Langer, R. S. & Anderson, D. G. Silencing or stimulation? siRNA delivery and the immune system. Annu. Rev. Chem. Biomol. Eng. 2, 77–96 (2011).

    CAS  PubMed Central  Google Scholar 

  34. 34.

    Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006).

    CAS  PubMed Central  Google Scholar 

  35. 35.

    Nahrendorf, M., Pittet, M. J. & Swirski, F. K. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121, 2437–2445 (2010).

    PubMed Central  Google Scholar 

  36. 36.

    Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    CAS  PubMed Central  Google Scholar 

  37. 37.

    Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5 and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    CAS  PubMed Central  Google Scholar 

  38. 38.

    Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    CAS  PubMed Central  Google Scholar 

  39. 39.

    Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    CAS  PubMed Central  Google Scholar 

  40. 40.

    Panizzi, P. et al. Impaired infarct healing in atherosclerotic mice with Ly-6Chi monocytosis. J. Am. Coll. Cardiol. 55, 1629–1638 (2010).

    PubMed Central  Google Scholar 

  41. 41.

    Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    CAS  PubMed Central  Google Scholar 

  42. 42.

    Broxmeyer, H. E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318 (2005).

    CAS  PubMed Central  Google Scholar 

  43. 43.

    Ferraro, F. et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci. Transl. Med. 3, 104ra101 (2011).

    PubMed Central  Google Scholar 

  44. 44.

    Langen, U. H. et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat. Cell Biol. 19, 189–201 (2017).

    CAS  PubMed Central  Google Scholar 

  45. 45.

    Peranteau, W. H., Hayashi, S., Hsieh, M., Shaaban, A. F. & Flake, A. W. High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood 100, 2225–2234 (2002).

    CAS  Google Scholar 

  46. 46.

    Kwarteng, E. O. & Heinonen, K. M. Competitive transplants to evaluate hematopoietic stem cell fitness. J. Vis. Exp. 114, e54345 (2016).

    Google Scholar 

  47. 47.

    Maryanovich, M. et al. The ATM–BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat. Cell Biol. 14, 535–541 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the National Institutes of Health (NIH) (nos. HL125428, HL131495 and T32HL076136), the European Union’s Horizon 2020 research and innovation programme (grant no. 667837) and the MGH Research Scholar Program. M.K.-G., M.J.S., D.R., S.C. and F.F.H. were supported by the Deutsche Forschungsgemeinschaft (nos. KR4613/1-1, SCHL 2221/1-1, RO5071/1-1, CR603/11 and HO5279/1-2). M.J.M. is supported by a Burroughs Wellcome Fund Career Award at the Scientific Interface, a Ruth L. Kirschstein National Research Service Award (no. F32CA200351) from the NIH, a fellowship from the Max Planck Society and a grant from the Burroughs Wellcome Fund (no. 1015145). P.P.G.G. is supported by a CNPq postdoctoral fellowship (no. 202856/2015-1) and a Fundação Estudar fellowship. This work is further supported in part by NIH grant no. R37-EB000244-30 (to R.L.), NIH contract no. HHSN268201000045C (to R.L.), a Koch–Prostate Cancer Foundation Award in Nanotherapeutics (to R.L.), the Koch Institute Marble Center for Cancer Nanomedicine and a Cancer Center Support (core) grant P30-CA14051 from the National Cancer Institute. We acknowledge the use of resources at the Koch Institute Swanson Biotechnology Center (and technical support), as well as the W.M. Keck Biological Imaging Facility (Whitehead Institute) and thank S. Mordecai at the flow, image and mass cytometry core of the MGH Department of Pathology. We thank K. Joyes for editing the manuscript.

Author information

Affiliations

Authors

Contributions

M.K.-G., M.J.M., M.J.S., D.G.A. and M.N. designed the experiments. M.J.S., O.F.K., G.C., P.P.G.G., S.C., Y.S., M.T., J.W., K.W., D.R., P.S.K., R.N., V.F., M.H., A.C., F.F.H., Y.I., S.P.S. and G.R.W. performed experiments and collected data. M.K.-G., M.J.M., F.K.S., R.L., D.G.A. and M.N. discussed the results and strategy. M.K.-G., M.J.M., D.G.A. and M.N. wrote the manuscript, which was edited by all co-authors. D.G.A. and M.N. supervised, directed and managed the study.

Corresponding authors

Correspondence to Daniel G. Anderson or Matthias Nahrendorf.

Ethics declarations

Competing interests

R.L. has served as an advisor to Alnylam Pharmaceuticals. For a list of entities with which R.L. is involved, compensated or uncompensated, see www.dropbox.com/s/yc3xqb5s8s94v7x/Rev%20Langer%20COI.pdf?dl=0. M.N. has received consulting fees unrelated to this work from Verseau, Gimv and IMF Therapeutics. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krohn-Grimberghe, M., Mitchell, M.J., Schloss, M.J. et al. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nat Biomed Eng 4, 1076–1089 (2020). https://doi.org/10.1038/s41551-020-00623-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing