Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver

Abstract

Systemically delivered lipid nanoparticles are preferentially taken up by hepatocytes. This hinders the development of effective, non-viral means of editing genes in tissues other than the liver. Here we show that lipid-nanoparticle-mediated gene editing in the lung and spleen of adult mice can be enhanced by reducing Cas9-mediated insertions and deletions in hepatocytes via oligonucleotides disrupting the secondary structure of single-guide RNAs (sgRNAs) and also via their combination with short interfering RNA (siRNA) targeting Cas9 messenger RNA (mRNA). In SpCas9 mice with acute lung inflammation, the systemic delivery of an oligonucleotide inhibiting an sgRNA targeting the intercellular adhesion molecule 2 (ICAM-2), followed by the delivery of the sgRNA, reduced the fraction of ICAM-2 indels in hepatocytes and increased that in lung endothelial cells. In wild-type mice, the lipid-nanoparticle-mediated delivery of an inhibitory oligonucleotide, followed by the delivery of Cas9-degrading siRNA and then by Cas9 mRNA and sgRNA, reduced the fraction of ICAM-2 indels in hepatocytes but not in splenic endothelial cells. Inhibitory oligonucleotides and siRNAs could be used to modulate the cell-type specificity of Cas9 therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic antisense oligonucleotides termed iOligos reduce Cas9 activity in cell culture.
Fig. 2: iOligo reduces gene editing by interacting with sgRNA.
Fig. 3: iOligo controls systemic gene editing in vivo.
Fig. 4: siRNA-mediated reduction of Cas9 expression controls gene editing in vitro and in vivo.
Fig. 5: Combining iOligo- and siGFP-based approaches markedly reduces cell-type-specific Cas9 gene editing.
Fig. 6: iOligo-based approaches reduced cell-type-specific Cas9 gene editing in models of lung inflammation.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding author on reasonable request.

References

  1. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. 380, 947–959 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00439-4 (2022).

  4. Lee, B. et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2, 497–507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 56, 1059–1063 (2017).

    Article  CAS  Google Scholar 

  8. Jiang, C. et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 27, 440–443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 6, eabc2315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lorenzer, C., Dirin, M., Winkler, A. M., Baumann, V. & Winkler, J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J. Control. Release 203, 1–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zlatev, I. et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol. 36, 509–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, J. et al. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25, 1421–1431 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pawluk, A. et al. Naturally occurring off-switches for CRISPR–Cas9. Cell 167, 1829–1838.e1829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shin, J. et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3, e1701620 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhu, Y., Zhang, F. & Huang, Z. Structural insights into the inactivation of CRISPR–Cas systems by diverse anti-CRISPR proteins. BMC Biol.16, 32 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Maji, B. et al. A high-throughput platform to identify small-molecule inhibitors of CRISPR–Cas9. Cell 177, 1067–1079.e1019. (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levin, A. A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med. 380, 57–70 (2019).

    Article  PubMed  Google Scholar 

  30. Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Garrelfs, S. LB002ILLUMINATE-A, a phase 3 study of lumasiran, an investigational RNAi therapeutic, in children and adults with primary hyperoxaluria type 1 (PH1). Nephrol. Dial. Transplant. 35, gfaa146.LB002 (2020).

    Article  Google Scholar 

  32. Deleavey, G. F. & Damha, M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Novobrantseva, T. I. et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol. Ther. Nucleic Acids 1, e4 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Khan, O. F. et al. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. Sci. Adv. 4, eaar8409 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yildirim, I., Kierzek, E., Kierzek, R. & Schatz, G. C. Interplay of LNA and 2′-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: a molecular dynamics study using the revised AMBER force field and comparison with experimental results. J. Phys. Chem. B 118, 14177–14187 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ni, C. W., Kumar, S., Ankeny, C. J. & Jo, H. Development of immortalized mouse aortic endothelial cell lines. Vasc. Cell 6, 7 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Raper, A. T., Stephenson, A. A. & Suo, Z. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 140, 2971–2984 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, B. et al. Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed. Eng. 1, 0066 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong, G., Wang, H., Li, Y., Tran, M. H. & Farzan, M. Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells. Nat. Chem. Biol. 13, 839–841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, B. et al. Synthetic oligonucleotides inhibit CRISPR-Cpf1-mediated genome editing. Cell Rep. 25, 3262–3272.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen, X. & Corey, D. R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 46, 1584–1600 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xue, W. et al. Small RNA combination therapy for lung cancer. Proc. Natl Acad. Sci. USA 111, E3553–E3561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bartlett, D. W. & Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 34, 322–333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hickerson, R. P. et al. Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides 18, 345–354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Sanhueza, C. A. et al. Efficient liver targeting by polyvalent display of a compact ligand for the asialoglycoprotein receptor. J. Am. Chem. Soc. 139, 3528–3536 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sehgal, A. et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat. Med. 21, 492–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Gerwin, N. et al. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. Immunity 10, 9–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Ganzalo, J. A. et al. Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity 4, 1–14 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown, J. M. et al. Ligand conjugated multimeric siRNAs enable enhanced uptake and multiplexed gene silencing. Nucleic Acid Ther. 29, 239–244 (2019).

    Article  CAS  Google Scholar 

  61. Kishimoto, T. K. et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotechnol. 11, 890–899 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Barros, S. A. & Gollob, J. A. Safety profile of RNAi nanomedicines. Adv. Drug Deliv. Rev. 64, 1730–1737 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. E. Cattie at Emory University and T. E. Shaw.

Author information

Authors and Affiliations

Authors

Contributions

C.D.S. and J.E.D. conceived the experiments. C.D.S., P.J.S., M.G.F. and J.E.D. designed the experiments. C.D.S., M.P.L., D.L., K.E.L., R.H., B.R.K., S.K., M.S., E.S.E., J.P.F., Z.G., L.G., K.P., C.A.S. and J.E.D. performed the experiments. C.D.S. and J.E.D. wrote the initial draft of the paper, which was edited by all authors.

Corresponding author

Correspondence to James E. Dahlman.

Ethics declarations

Competing interests

Patents describing the system documented in this Article have been filed with the US Patent Office. C.D.S. and J.E.D. are listed as inventors on patent (International publication no. WO2021021636A1). C.D.S. works at Beam Therapeutics. J.E.D. consults for GV. All other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Krishanu Saha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 iOligo variants also inhibit Cas12a-mediated gene editing.

(a,b) Sequence and chemical modifications for crGFP and (b) previously reported full-length 41 nucleotide antisense sequence targeting Cas12a. (c) The 41 nucleotide sequence Cas12a reduced indel formation at doses of 150 nM and 50 nM when delivered to cells before crGFP and Cas12a mRNA transfection. (d) Schematic of the proposed toehold mechanism for iOligo targeting Cas12a. The iOligo Cas12a is designed to complement to full- length crGFP RNA, providing the 5’ toe-hold and disrupting RNA secondary structure. (e) The sequences of the truncated iOligo Cas12a, and proposed binding to complementary regions on crGFP. The linear region of the crRNA is required to mediate a strand displacement reaction and facilitate iOligo binding. (F,G) Normalized indels in HEK293T cells after treatment with varying concentrations of full-length and truncated versions of iOligo Cas12a, before crGFP and Cas12a mRNA transfection at (f) 80 nM iOligo, *p = 0.015, **p = 0.008, and (g) 40 nM iOligo, *p = 0.022, **p = 0.0026, one-way ANOVA. All error bars show the average + /- SEM.

Extended Data Fig. 2 iOligo chemical modifications affect gene editing.

(a) Sequence and chemical modifications patterns for iOligo D with various modification patterns. (b) Normalized indel inhibition of various chemical modification patterns as compared to fully 2’ O-methyl, fully phosphorothioated iOligo-D. (c) Sequence and chemical modifications patterns for iOligo D with 2’ O-methyl and 2’ Methoxyethyl (MOE). (d) Normalized indels of 2’ O-methyl and 2’ Methoxyethyl modified iOligo. All error bars show the average + /- SEM.

Extended Data Fig. 3 siRNA-mediated reduction of Cas9 expression controls gene editing in vitro and in vivo.

(a) Engineered 3’ UTR with 5 siGFP-binding sites. An engineered luciferase-encoding mRNA with the custom 3’ UTR will be degraded in the presence of siGFP, leading to decreased luciferase protein production as measured by luminescence. (b) The engineered luciferase-encoding mRNA with the custom 3’ UTR led to dose-dependent normalized expression in the presence of siGFP, compared to cells treated with siICAM-2. (c) Mice were pre- treated with either siGFP or siICAM-2 delivered by a hepatocyte-trophic LNP. 14 hours later, the engineered luciferase mRNA was delivered by a hepatocyte LNP. Liver luminescence is measured ex vivo. (d) Normalized ex vivo luminescence the liver from mice pretreated with either siICAM- 2 or siGFP. All error bars show the average + /- SEM.

Extended Data Fig. 4 iOligo-based approaches can be used to reduce cell type-specific Cas9 gene editing in models of lung inflammation.

(a) The percentage of ICAM-2 indels in hepatocytes and (b) lung endothelial cells following treatment of Ova, iOligo / Ctrl, and sgICAM-2 / sgCtrl, *p = 0.04, **p = 0.009 one-way ANOVA, average + /- SEM.

Supplementary information

Supplementary information

Supplementary figures and synthesis methods.

Reporting Summary

Peer Review File

Supplementary Table 1

In vivo editing in specific cell types.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sago, C.D., Lokugamage, M.P., Loughrey, D. et al. Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver. Nat Biomed Eng 6, 157–167 (2022). https://doi.org/10.1038/s41551-022-00847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00847-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research