Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AND-gate contrast agents for enhanced fluorescence-guided surgery

Abstract

Surgical resection of tumours requires precisely locating and defining the margins between lesions and normal tissue. However, this is made difficult by irregular margin borders. Although molecularly targeted optical contrast agents can be used to define tumour margins during surgery in real time, the selectivity of the contrast agents is often limited by the target being expressed in both healthy and tumour tissues. Here, we show that AND-gate optical imaging probes that require the processing of two substrates by multiple tumour-specific enzymes produce a fluorescent signal with significantly improved specificity and sensitivity to tumour tissue. We evaluated the performance of the probes in mouse models of mammary tumours and of metastatic lung cancer, as well as during fluorescence-guided robotic surgery. Imaging probes that rely on multivariate activation to selectively target complex patterns of enzymatic activity should be useful in disease detection, treatment and monitoring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The AND-gate strategy.
Fig. 2: Structure and in vitro validation of AND-gate probes.
Fig. 3: Enhanced selectivity and sensitivity of DEATH-CAT-2 in the 4T1 breast tumour model.
Fig. 4: Quantitative analysis of DEATH-CAT-2 compared with single substrates and negative controls in the 4T1 breast tumour model.
Fig. 5: Images from robotic fluorescence-guided surgery and quantification of fluorescence signal in healthy organs.
Fig. 6: Structure of the FAP-CAT AND-gate probe and evaluation in a 4T1 breast tumour model.
Fig. 7: Evaluation of AND-gate probes in a mouse model of lung metastasis.
Fig. 8: Evaluation of DEATH-CAT–FNIR in a mouse model of lung metastasis.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding author on reasonable request.

References

  1. Tringale, K. R., Pang, J. & Nguyen, Q. T. Image-guided surgery in cancer: a strategy to reduce incidence of positive surgical margins. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1412 (2018).

    Article  PubMed  Google Scholar 

  2. Orosco, R. K. et al. Positive surgical margins in the 10 most common solid cancers. Sci. Rep. 8, 5686 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yossepowitch, O. et al. Positive surgical margins after radical prostatectomy: a systematic review and contemporary update. Eur. Urol. 65, 303–313 (2014).

    Article  PubMed  Google Scholar 

  4. Winter, J. M. et al. 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J. Gastrointest. Surg. 10, 1199–1210 (2006).

    Article  PubMed  Google Scholar 

  5. McGirt, M. J. et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 63, 700–707 (2008).

    Article  PubMed  Google Scholar 

  6. Brouwer de Koning, S. G., Vrancken Peeters, M., Jozwiak, K., Bhairosing, P. A. & Ruers, T. J. M. Tumor resection margin definitions in breast-conserving surgery: systematic review and meta-analysis of the current literature. Clin. Breast Cancer 18, e595–e600 (2018).

    Article  PubMed  Google Scholar 

  7. Morrow, M. et al. Trends in reoperation after initial lumpectomy for breast cancer: addressing overtreatment in surgical management. JAMA Oncol. 3, 1352–1357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valdes, P. A., Roberts, D. W., Lu, F. K. & Golby, A. Optical technologies for intraoperative neurosurgical guidance. Neurosurg. Focus 40, E8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang, J. et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med. 9, eaan3968 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Thill, M. MarginProbe: intraoperative margin assessment during breast conserving surgery by using radiofrequency spectroscopy. Expert Rev. Med. Devices 10, 301–315 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Garland, M., Yim, J. J. & Bogyo, M. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol. 23, 122–136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gossedge, G., Vallance, A. & Jayne, D. Diverse applications for near infra-red intraoperative imaging. Colorectal Dis. 17, 7–11 (2015).

    Article  PubMed  Google Scholar 

  14. Ferraro, N. et al. The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review. Neurosurg. Rev. 39, 545–555 (2016).

    Article  PubMed  Google Scholar 

  15. Nguyen, Q. T. & Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat. Rev. Cancer 13, 653–662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med. 8, 320ra324 (2016).

    Article  CAS  Google Scholar 

  18. Whitney, M. et al. Ratiometric activatable cell-penetrating peptides provide rapid in vivo readout of thrombin activation. Angew. Chem. Int. Ed. Engl. 52, 325–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Sakabe, M. et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J. Am. Chem. Soc. 135, 409–414 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Ofori, L. O. et al. Design of protease activated optical contrast agents that exploit a latent lysosomotropic effect for use in fluorescence-guided surgery. ACS Chem. Biol. 10, 1977–1988 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Parks, W. C., Wilson, C. L. & Lopez-Boado, Y. S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 4, 617–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Mohamed, M. M. & Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Aggarwal, N. & Sloane, B. F. Cathepsin B: multiple roles in cancer. Proteom. Clin. Appl. 8, 427–437 (2014).

    Article  CAS  Google Scholar 

  25. Yim, J. J., Tholen, M., Klaassen, A., Sorger, J. & Bogyo, M. Optimization of a protease activated probe for optical surgical navigation. Mol. Pharm. 15, 750–758 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Erbas-Cakmak, S. et al. Molecular logic gates: the past, present and future. Chem. Soc. Rev. 47, 2228–2248 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Stennicke, H. R., Renatus, M., Meldal, M. & Salvesen, G. S. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J. 350, 563–568 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blum, G. et al. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat. Chem. Biol. 1, 203–209 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loser, R. & Pietzsch, J. Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes. Front. Chem. 3, 37 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Olson, O. C. & Joyce, J. A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 15, 712–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Nikoletopoulou, V., Markaki, M., Palikaras, K. & Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta 1833, 3448–3459 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Edgington-Mitchell, L. E. & Bogyo, M. Detection of active caspases during apoptosis using fluorescent activity-based probes. Methods Mol. Biol. 1419, 27–39 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ye, D. et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem. 6, 519–526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luciano, M. P. et al. A nonaggregating heptamethine cyanine for building brighter labeled biomolecules. ACS Chem. Biol. 14, 934–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Busek, P., Mateu, R., Zubal, M., Kotackova, L. & Sedo, A. Targeting fibroblast activation protein in cancer—prospects and caveats. Front. Biosci. 23, 1933–1968 (2018).

    Article  CAS  Google Scholar 

  37. Pure, E. & Blomberg, R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37, 4343–4357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edosada, C. Y. et al. Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly2-Pro1-cleaving specificity. FEBS Lett. 580, 1581–1586 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Bainbridge, T. W. et al. Selective homogeneous assay for circulating endopeptidase fibroblast activation protein (FAP). Sci. Rep. 7, 12524 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhang, H. E. et al. Identification of novel natural substrates of fibroblast activation protein-alpha by differential degradomics and proteomics. Mol. Cell. Proteom. 18, 65–85 (2019).

    Article  CAS  Google Scholar 

  41. Hua, X., Yu, L., Huang, X., Liao, Z. & Xian, Q. Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma. Diagn. Pathol. 6, 111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zi, F. et al. Fibroblast activation protein alpha in tumor microenvironment: recent progression and implications (Review). Mol. Med. Rep. 11, 3203–3211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fang, J. et al. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. Int. J. Cancer 138, 1013–1023 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Winslow, M. M. et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 473, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DuPage, M. et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19, 72–85 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vickers, C. J., Gonzalez-Paez, G. E. & Wolan, D. W. Discovery of a highly selective caspase-3 substrate for imaging live cells. ACS Chem. Biol. 9, 2199–2203 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Julien, O. et al. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc. Natl Acad. Sci. USA 113, E2001–E2010 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jaattela, M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746–2756 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. Labi, V. & Erlacher, M. How cell death shapes cancer. Cell Death Dis. 6, e1675 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Verdoes, M. et al. Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J. Am. Chem. Soc. 135, 14726–14730 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Rasband, W. S. ImageJ (US National Institutes of Health, 1997–2011); http://imagej.nih.gov.stanford.idm.oclc.org/ij/

Download references

Acknowledgements

We thank S. Snipas in the G. Salvesen laboratory at Sanford Burnham Prebys Medical Discovery Institute for gifting the recombinant caspases used in this study; members of the Turk laboratory at the J. Stefan Institute for providing the recombinant cathepsin proteases used in this study; S. A. Malaker and N. Riley at the C. Bertozzi laboratory at Stanford University for the high-resolution mass analysis of the AND-gate probes; M. P. Luciano and M. J. Schnermann at the National Cancer Institute for supplying the FNIR-Tag-OSu used to synthesize the DEATH-CAT–FNIR probe; members of the P. Santa Maria laboratory for use of their SpectraM2 plate reader; and members of the M. Winslow laboratory for providing the KrasG12D/+Tp53/− lung adenocarcinoma cell line used in the lung metastases model. Tissue sectioning and H&E staining was performed by the Stanford Animal Histology Services (AHS). This work was supported by NIH grants (R01 EB026285, to M.B.) and Stanford Cancer Institute Translational Oncology Program seed grant (to M.B.), American Cancer Society–Grand View League Research Funding Initiative Postdoctoral Fellowship (PF-19-105-01-CCE, to J.C.W.), DFG Research Fellowship (TH2139/1-1, to M.T.) and Stanford ChEM-H Chemistry/Biology Interface Predoctoral Training Program and NSF Graduate Research Fellowship Grant (DGE-114747, to J.J.Y.).

Author information

Authors and Affiliations

Authors

Contributions

M.B. and J.C.W. conceived the AND-gate probe concept and designed all of the experiments. J.C.W. synthesized all of the AND-gate probes, conducted the fluorogenic substrate assays, live- and fixed-cell fluorescence microscopy experiments, and mouse model experiments. J.C.W. and M.B. wrote the text of the paper and constructed the figures with input from J.J.Y. and K.M.C.; M.T. and J.J.Y. helped to perform live and ex vivo imaging during the 4T1 cancer mouse model experiment, including dissection of the mice. S.R. assisted with experimental design of the cancer mouse model studies. M.T. helped with the immunohistochemical analysis of 4T1 tumours. A.A., A.K. and J.S. assisted with the robotic surgery. K.M.C. evaluated H&E sections for the lung metastasis and 4T1 breast cancer mouse models.

Corresponding author

Correspondence to Matthew Bogyo.

Ethics declarations

Competing interests

J.S., A.K. and A.A. are employees of and shareholders of Intuitive Surgical Inc., which makes the da Vinci robotic surgical system used in this study. M.B. has received funding from Intuitive Surgical Inc. for work unrelated to the studies presented in this manuscript and does not hold stock or any advisory/consulting position with the company.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures and references.

Reporting Summary

Supplementary Video 1

Application of the DEATH-CAT probe in a 4T1-tumour mouse model using the da Vinci surgical system.

Supplementary Video 2

Application of the DEATH-CAT probe in a lung-metastasis mouse model using the da Vinci surgical system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widen, J.C., Tholen, M., Yim, J.J. et al. AND-gate contrast agents for enhanced fluorescence-guided surgery. Nat Biomed Eng 5, 264–277 (2021). https://doi.org/10.1038/s41551-020-00616-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-00616-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer