Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs

Abstract

Glucose-responsive insulin delivery systems that mimic pancreatic endocrine function could enhance health and improve quality of life for people with type 1 and type 2 diabetes with reduced β-cell function. However, insulin delivery systems with rapid in vivo glucose-responsive behaviour typically have limited insulin-loading capacities and cannot be manufactured easily. Here, we show that a single removable transdermal patch, bearing microneedles loaded with insulin and a non-degradable glucose-responsive polymeric matrix, and fabricated via in situ photopolymerization, regulated blood glucose in insulin-deficient diabetic mice and minipigs (for minipigs >25 kg, glucose regulation lasted >20 h with patches of ~5 cm2). Under hyperglycaemic conditions, phenylboronic acid units within the polymeric matrix reversibly form glucose–boronate complexes that—owing to their increased negative charge—induce the swelling of the polymeric matrix and weaken the electrostatic interactions between the negatively charged insulin and polymers, promoting the rapid release of insulin. This proof-of-concept demonstration may aid the development of other translational stimuli-responsive microneedle patches for drug delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the glucose-responsive insulin delivery system using microneedle-array patches with glucose-responsive matrix.
Fig. 2: Characterization of the GR-MN.
Fig. 3: In vivo evaluation of the GR-MN patch in an STZ-induced diabetic mouse model.
Fig. 4: In vivo evaluation of GR-MN in an STZ-induced diabetic minipig model.

Similar content being viewed by others

Data availability

The authors declare that all of the data supporting the findings of this study are available within the paper and the Supplementary Information.

References

  1. Veiseh, O., Tang, B. C., Whitehead, K. A., Anderson, D. G. & Langer, R. Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Ohkubo, Y. et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28, 103–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Owens, D. R., Zinman, B. & Bolli, G. B. Insulins today and beyond. Lancet 358, 739–746 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Bakh, N. A. et al. Glucose-responsive insulin by molecular and physical design. Nat. Chem. 9, 937–943 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, J., Zhang, Y., Bomba, H. & Gu, Z. Stimuli‐responsive delivery of therapeutics for diabetes treatment. Bioeng. Transl. Med. 1, 323–337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravaine, V., Ancla, C. & Catargi, B. Chemically controlled closed-loop insulin delivery. J. Control. Release 132, 2–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, Q., Wang, L., Yu, H., Wang, J. & Chen, Z. Organization of glucose-responsive systems and their properties. Chem. Rev. 111, 7855–7875 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, J. et al. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett. 17, 733–739 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Kost, J., Leong, K. & Langer, R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc. Natl Acad. Sci. USA 86, 7663–7666 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Podual, K., Doyle, F. J. III & Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly (ethylene glycol) grafts. J. Control. Release 67, 9–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Podual, K., Doyle Iii, F. & Peppas, N. Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase. Polymer 41, 3975–3983 (2000).

    Article  CAS  Google Scholar 

  13. Gu, Z. et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 7, 4194–4201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science 206, 1190–1191 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Brownlee, M. & Cerami, A. Glycosylated insulin complexed to concanavalin A: biochemical basis for a closed-loop insulin delivery system. Diabetes 32, 499–504 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, C. et al. Red blood cells for glucose‐responsive insulin delivery. Adv. Mater. 29, 1606617 (2017).

    Article  CAS  Google Scholar 

  17. Yang, R. et al. A glucose-responsive insulin therapy protects animals against hypoglycemia. JCI Insight 3, 97476 (2018).

    Article  PubMed  Google Scholar 

  18. Wang, J. et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).

  19. Chou, D. H.-C. et al. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl Acad. Sci. USA 112, 2401–2406 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto, A. et al. Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 3, eaaq0723 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Matsumoto, A., Yoshida, R. & Kataoka, K. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5, 1038–1045 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Kataoka, K., Miyazaki, H., Bunya, M., Okano, T. & Sakurai, Y. Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on–off regulation of insulin release. J. Am. Chem. Soc. 120, 12694–12695 (1998).

    Article  CAS  Google Scholar 

  23. Matsumoto, A. et al. A synthetic approach toward a self‐regulated insulin delivery system. Angew. Chem. Int. Ed. 51, 2124–2128 (2012).

    Article  CAS  Google Scholar 

  24. Mo, R., Jiang, T., Di, J., Tai, W. & Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 43, 3595–3629 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Ye, T. et al. Tailoring the glucose-responsive volume phase transition behaviour of Ag@poly(phenylboronic acid) hybrid microgels: from monotonous swelling to monotonous shrinking upon adding glucose at physiological pH. Polym. Chem. 5, 2352–2362 (2014).

    Article  CAS  Google Scholar 

  26. Wu, W., Mitra, N., Yan, E. C. & Zhou, S. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 4, 4831–4839 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, X. et al. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev. 42, 8032–8048 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Brooks, W. L. & Sumerlin, B. S. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev. 116, 1375–1397 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sullivan, S. P., Murthy, N. & Prausnitz, M. R. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater. 20, 933–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prausnitz, M. R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56, 581–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Vancoillie, G. & Hoogenboom, R. Synthesis and polymerization of boronic acid containing monomers. Polym. Chem. 7, 5484–5495 (2016).

    Article  CAS  Google Scholar 

  33. Ding, Z., Guan, Y., Zhang, Y. & Zhu, X. Layer-by-layer multilayer films linked with reversible boronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter 5, 2302–2309 (2009).

    Article  CAS  Google Scholar 

  34. Hisamitsu, I., Kataoka, K., Okano, T. & Sakurai, Y. Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm. Res. 14, 289–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Summerfield, A., Meurens, F. & Ricklin, M. E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 66, 14–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Larsen, M. O. et al. Mild streptozotocin diabetes in the Göttingen minipig. A novel model of moderate insulin deficiency and diabetes. Am. J. Physiol. Endocrinol. Metab. 282, E1342–E1351 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Larsen, M. O., Rolin, B., Wilken, M., Carr, R. D. & Gotfredsen, C. F. Measurements of insulin secretory capacity and glucose tolerance to predict pancreatic β-cell mass in vivo in the nicotinamide/streptozotocin Göttingen minipig, a model of moderate insulin deficiency and diabetes. Diabetes 52, 118–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Akhtar, M. S., Ramzan, A., Ali, A. & Ahmad, M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int. J. Food Sci. Nutr. 62, 609–616 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Larsen, M. O. & Rolin, B. Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 45, 303–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Larsen, M. et al. The conscious Göttingen minipig as a model for studying rapid pulsatile insulin secretion in vivo. Diabetologia 45, 1389–1396 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Y. et al. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 139, 51–70 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yu, J., Zhang, Y., Kahkoska, A. R. & Gu, Z. Bioresponsive transcutaneous patches. Curr. Opin. Biotechnol. 48, 28–32 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2017).

    Article  CAS  Google Scholar 

  45. Kaarsholm, N. C. et al. Engineering glucose responsiveness into insulin. Diabetes 67, 299–308 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, S. et al. Phase‐transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv. Funct. Mater. 25, 4633–4641 (2015).

    Article  CAS  Google Scholar 

  47. Gu, Z. & Wang, J. Charge-switchable polymeric depot for glucose-triggered insulin delivery with ultrafast response. Patent no. WO2019104006A1 (2017).

  48. Wang, J. et al. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc. Natl Acad. Sci. USA 116, 10744–10748 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, W. et al. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat. Commun. 8, 1777 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yu, J. et al. Insulin‐responsive glucagon delivery for prevention of hypoglycemia. Small 13, 1603028 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Zenomics Inc. and a start-up package from University of California, Los Angeles. We acknowledge the use of the Analytical Instrumentation Facility at North Carolina State, which is supported by the State of North Carolina and National Science Foundation. A.R.K. is supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (grant no. F30DK113728). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and Z.G. conceived the study idea. J.Y., A.R.K., J.B.B., R.L. and Z.G. designed the experiments. J.Y., J.W., Y.Z., G.C., W.M. and Y.Y. performed the experiments. All authors contributed to writing the manuscript, discussing the results and implications and editing the manuscript at all stages.

Corresponding author

Correspondence to Zhen Gu.

Ethics declarations

Competing interests

Z.G., J.Y. and G.C. have applied for patents related to this study. Z.G. is a scientific co-founder of Zenomics Inc. R.L. and J.B.B. are Scientific Advisory Board members of Zenomics Inc. J.Y., Y.Z., W.M. and Y.Y. are full-time employees of Zenomics Inc. R.L. discloses potential competing interests due to his affiliation with Zenomics Inc. For a list of entities with which R.L. is involved, compensated or uncompensated, see https://tinyurl.com/RLCOINBME. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Tables 1–5.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wang, J., Zhang, Y. et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 4, 499–506 (2020). https://doi.org/10.1038/s41551-019-0508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0508-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research