Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories

Abstract

Cardiosphere-derived cells are therapeutic candidates with disease-modifying bioactivity, but their variable potency has complicated their clinical translation. Transcriptomic analyses of cardiosphere-derived cells from human donors have revealed that their therapeutic potency correlates with Wnt/β-catenin signalling and with β-catenin protein levels. Here, we show that skin fibroblasts engineered to overexpress β-catenin and the transcription factor Gata4 become immortal and therapeutically potent. Transplantation of the engineered fibroblasts into a mouse model of acute myocardial infarction led to improved cardiac function and mouse survival, and in the mdx mouse model of Duchenne muscular dystrophy, exosomes secreted by the engineered fibroblasts improved exercise capacity and reduced skeletal-muscle fibrosis. We also demonstrate that exosomes from high-potency cardiosphere-derived cells exhibit enhanced levels of miR-92a (a known potentiator of the Wnt/β-catenin pathway), and that they activate cardioprotective bone-morphogenetic-protein signalling in cardiomyocytes. Our findings show that the modulation of canonical Wnt signalling can turn therapeutically inert mammalian cells into immortal exosome factories for cell-free therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sequencing summary of high- and low-potency donors.
Fig. 2: β-catenin is necessary for CDC potency.
Fig. 3: Mest regulates β-catenin in CDCs.
Fig. 4: Mest inhibition in immortalized CDCs.
Fig. 5: NHDF immortalization with β-catenin or β-catenin/gata4.
Fig. 6: Bioactivity of ASTEX in an mdx mouse model of Duchenne muscular dystrophy.
Fig. 7: β-catenin-activation leads to downstream activation of bmp2 in target cells via miR-92a.

Data availability

The authors declare that all data supporting the results in this study are available within the paper and its Supplementary Information.

References

  1. 1.

    Kreke, M., Smith, R. R., Marban, L. & Marban, E. Cardiospheres and cardiosphere-derived cells as therapeutic agents following myocardial infarction. Expert Rev. Cardiovasc. Ther. 10, 1185–1194 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Smith, R. R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908 (2007).

    Article  Google Scholar 

  3. 3.

    Aminzadeh, M. A. et al. Exosome-mediated benefits of cell therapy in mouse and human models of duchenne muscular dystrophy. Stem Cell Rep. 10, 942–955 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Ashur, C. & Frishman, W. H. Cardiosphere-derived cells and ischemic heart failure. Cardiol. Rev. 26, 8–21 (2018).

    Article  Google Scholar 

  5. 5.

    Oh, H. Cell therapy trials in congenital heart disease. Circ. Res. 120, 1353–1366 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Chimenti, I. et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res. 106, 971–980 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Galvez, B. G. et al. Human cardiac mesoangioblasts isolated from hypertrophic cardiomyopathies are greatly reduced in proliferation and differentiation potency. Cardiovasc. Res. 83, 707–716 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Salem, B. et al. Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency. Cytotherapy 17, 1675–1686 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Cheng, K. et al. Human cardiosphere-derived cells from advanced heart failure patients exhibit augmented functional potency in myocardial repair. JACC Heart Fail. 2, 49–61 (2014).

    Article  Google Scholar 

  10. 10.

    Harvey, E. et al. Potency of human cardiosphere-derived cells from patients with ischemic heart disease is associated with robust vascular supportive ability. Stem Cells Transl. Med. 6, 1399–1411 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Marban, E. A mechanistic roadmap for the clinical application of cardiac cell therapies. Nat. Biomed. Eng. 2, 353–361 (2018).

    Article  Google Scholar 

  12. 12.

    MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell. 17, 9–26 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Cheng, K. et al. Relative roles of CD90 and c-kit to the regenerative efficacy of cardiosphere-derived cells in humans and in a mouse model of myocardial infarction. J. Am. Heart Assoc. 3, e001260 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Vargas, D. A., Sun, M., Sadykov, K., Kukuruzinska, M. A. & Zaman, M. H. The integrated role of Wnt/beta-Catenin, N-glycosylation, and E-cadherin-mediated adhesion in network dynamics. PLoS Comput. Biol. 12, e1005007 (2016).

    Article  Google Scholar 

  15. 15.

    Lin, X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131, 6009–6021 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    Barile, L. et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc. Res. 103, 530–541 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Ibrahim, A. G., Cheng, K. & Marban, E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2, 606–619 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    May, E., May, P. & Weil, R. Analysis of the events leading to SV40-induced chromosome replication and mitosis in primary mouse kidney cell cultures. Proc. Natl Acad. Sci. USA 68, 1208–1211 (1971).

    CAS  Article  Google Scholar 

  19. 19.

    Smith, H. S., Scher, C. D. & Todaro, G. J. Induction of cell division in medium lacking serum growth factor by SV40. Virology 44, 359–370 (1971).

    CAS  Article  Google Scholar 

  20. 20.

    Chen, T. S. et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 9, 47 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Gillespie, J. R. et al. Deletion of glycogen synthase kinase-3beta in cartilage results in up-regulation of glycogen synthase kinase-3alpha protein expression. Endocrinology 152, 1755–1766 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Cambier, L., Plate, M., Sucov, H. M. & Pashmforoush, M. Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3. Development 141, 2959–2971 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Li, H. et al. Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am. J. Physiol. Heart Circ. Physiol. 299, H1772–H1781 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Oh, S. Y., Kim, J. Y. & Park, C. The ETS factor, ETV2: a master regulator for vascular endothelial cell development. Mol. Cells 38, 1029–1036 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Hofsteen, P., Robitaille, A. M., Chapman, D. P., Moon & Murry, C. E. Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/beta-catenin signaling. Proc. Natl Acad. Sci. USA 113, 1002–1007 (2016).

  26. 26.

    Palpant, N. J. et al. Inhibition of beta-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development 142, 3198–3209 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Wang, Y. et al. Myocardial beta-catenin-BMP2 signaling promotes mesenchymal cell proliferation during endocardial cushion formation. J. Mol. Cell. Cardiol. 123, 150–158 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Klaus, A. et al. Wnt/beta-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc. Natl Acad. Sci. USA 109, 10921–10926 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Zelarayan, L., Gehrke, C. & Bergmann, M. W. Role of beta-catenin in adult cardiac remodeling. Cell Cycle 6, 2120–2126 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    Ghosh-Choudhury, N., Abboud, S. L., Chandrasekar, B. & Ghosh Choudhury, G. BMP-2 regulates cardiomyocyte contractility in a phosphatidylinositol 3 kinase-dependent manner. FEBS Lett. 544, 181–184 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    Wang, Y. X. et al. Bone morphogenetic protein-2 acts upstream of myocyte-specific enhancer factor 2a to control embryonic cardiac contractility. Cardiovasc. Res. 74, 290–303 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    Sun, Q. et al. Role of miR-17 family in the negative feedback loop of bone morphogenetic protein signaling in neuron. PLoS ONE 8, e83067 (2013).

    Article  Google Scholar 

  33. 33.

    Ning, G., Liu, X., Dai, M., Meng, A. & Wang, Q. MicroRNA-92a upholds Bmp signaling by targeting noggin3 during pharyngeal cartilage formation. Dev. Cell. 24, 283–295 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Nusse, R. Wnt signaling in disease and in development. Cell Res. 15, 28–32 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    Bukowska, J., Ziecik, A. J., Laguna, J., Gawronska-Kozak, B. & Bodek, G. The importance of the canonical wnt signaling pathway in the porcine endometrial stromal stem/progenitor cells: implications for regeneration. Stem Cells Dev. 24, 2873–2885 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Cosin-Roger, J. et al. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD. Mucosal Immunol. 9, 986–998 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Li, M. et al. miR-709 modulates LPS-induced inflammatory response through targeting GSK-3beta. Int. Immunopharmacol. 36, 333–338 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Ortiz-Masia, D. et al. Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD. Mucosal Immunol. 7, 929–938 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Hsu, Y. C. et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/beta-catenin signaling. Sci. Rep. 6, 30575 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Zhang, G. Y. et al. A novel regulatory function for miR-29a in keloid fibrogenesis. Clin. Exp. Dermatol. 41, 341 (2016).

    Article  Google Scholar 

  41. 41.

    Chilosi, M. et al. Epithelial to mesenchymal transition-related proteins ZEB1, beta-catenin, and beta-tubulin-III in idiopathic pulmonary fibrosis. Mod. Pathol. 30, 26–38 (2016).

    Article  Google Scholar 

  42. 42.

    Wang, S. et al. GSK-3beta inhibitor CHIR-99021 promotes proliferation via upregulating beta-catenin in neonatal atrial human cardiomyocytes. J. Cardiovasc. Pharmacol. 68, 425–432 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Ni, W. et al. Extensive supporting cell proliferation and mitotic hair cell generation by in vivo genetic reprogramming in the neonatal mouse Cochlea. J. Neurosci. 36, 8734 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015).

    Article  Google Scholar 

  45. 45.

    Potz, B. A. et al. Glycogen synthase kinase 3beta inhibition improves myocardial angiogenesis and perfusion in a swine model of metabolic syndrome. J. Am. Heart Assoc. 5, e003694 (2016).

    Article  Google Scholar 

  46. 46.

    Birdsey, G. M. et al. The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/beta-catenin signaling. Dev. Cell. 32, 82–96 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Kim, K. I. et al. Beta-catenin overexpression augments angiogenesis and skeletal muscle regeneration through dual mechanism of vascular endothelial growth factor-mediated endothelial cell proliferation and progenitor cell mobilization. Arterioscler. Thromb. Vasc. Biol. 26, 91–98 (2006).

    CAS  Article  Google Scholar 

  48. 48.

    Li, J. et al. Remote preconditioning provides potent cardioprotection via PI3K/Akt activation and is associated with nuclear accumulation of beta-catenin. Clin. Sci. 120, 451 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Hahn, J. Y. et al. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J. Bio. l Chem. 281, 30979–30989 (2006).

    CAS  Article  Google Scholar 

  50. 50.

    Marban, E. The secret life of exosomes: what bees can teach us about next-generation therapeutics. J. Am. Coll. Cardiol. 71, 193–200 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Dodson, B. P. & Levine, A. D. Challenges in the translation and commercialization of cell therapies. BMC Biotechnol. 15, 70 (2015).

    Article  Google Scholar 

  52. 52.

    Akers, J. C. et al. Optimizing preservation of extracellular vesicular miRNAs derived from clinical cerebrospinal fluid. Cancer Biomark. 17, 125–132 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Ibrahim, A. & Marban, E. Exosomes: fundamental biology and roles in cardiovascular physiology. Annu. Rev. Physiol. 78, 67–83 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Liu, B. et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat. Biomed. Eng. 2, 293–303 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Cambier, L. et al. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol. Med. 9, 337–352 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    Gallet, R. et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur. Heart J. 38, 201–211 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Cedars-Sinai Genomics Core for RNA sequencing, the Cedars Sinai Biobank and Translational Research Core for tissue processing, R. Benhaghnazar for technical assistance and A. Burtnick for help with Fig. 7. Work in the Marbán lab was supported by NIH R01124074; work at Capricor Therapeutics was supported by DOD PRMRP PR150618.

Author information

Affiliations

Authors

Contributions

A.I. conceived the idea, designed the experiments, performed the experiments, analysed the data and wrote the manuscript. C.L., R.R., M.F., T.A. and R.R.S. performed the experiments and provided technical and design input. L.L., S.D.V., J.J.M., B.T., A.A. and L.S. performed the experiments and analysed the data. L.R.-B. assisted with project design, L.M. supervised the study and E.M. conceived the idea, wrote the manuscript and supervised the study.

Corresponding authors

Correspondence to Ahmed G. E. Ibrahim or Eduardo Marbán.

Ethics declarations

Competing interests

E.M. owns founder’s stock in Capricor Therapeutics. L.L., S.D.V., J.J.M., L.R.-B., R.R.S. and L.M. are employees of the company.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.G.E., Li, C., Rogers, R. et al. Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories. Nat Biomed Eng 3, 695–705 (2019). https://doi.org/10.1038/s41551-019-0448-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing