Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model


Owing to population aging, the social impact of osteoarthritis (OA)—the most common musculoskeletal disease—is expected to increase dramatically. Yet, therapy is still limited to palliative treatments or surgical intervention, and disease-modifying OA (DMOA) drugs are scarce, mainly because of the absence of relevant preclinical OA models. Therefore, in vitro models that can reliably predict the efficacy of DMOA drugs are needed. Here, we show, using a newly developed microphysiological cartilage-on-a-chip model that enables the application of strain-controlled compression to three-dimensional articular cartilage microtissue, that a 30% confined compression recapitulates the mechanical factors involved in OA pathogenesis and is sufficient to induce OA traits. Such hyperphysiological compression triggers a shift in cartilage homeostasis towards catabolism and inflammation, hypertrophy, and the acquisition of a gene expression profile akin to those seen in clinical osteoarthritic tissue. The cartilage on-a-chip model may enable the screening of DMOA candidates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Microscale system for mechanical confined compression of 3D cell microconstructs.
Fig. 2: Construct deformation field: computations and experimental validation.
Fig. 3: Establishment of a human model of healthy COC.
Fig. 4: Effect of mechanical compression on COC anabolic traits.
Fig. 5: Effect of mechanical compression on COC catabolic enzymes, inflammation, hAC phenotypic switching and the OA-correlating gene profile.
Fig. 6: Drug screening using the OA COC model.

Data availability

The main data supporting the findings of this study are available within the paper and its Supplementary Information. All data generated for this study are available from the corresponding author upon reasonable request.


  1. 1.

    Bijlsma, J. W., Berenbaum, F. & Lafeber, F. P. Osteoarthritis: an update with relevance for clinical practice. Lancet 377, 2115–2126 (2011).

    Article  Google Scholar 

  2. 2.

    Wittenauer, R., Smith, L. & Aden, K. Background Paper 6.12: Osteoarthritis (WHO, 2013).

  3. 3.

    Sanchez-Adams, J., Leddy, H. A., McNulty, A. L., O’Conor, C. J. & Guilak, F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr. Rheumatol. Rep. 16, 451 (2014).

    Article  Google Scholar 

  4. 4.

    Arden, N. & Nevitt, M. C. Osteoarthritis: epidemiology. Best. Pract. Res. Clin. Rheumatol. 20, 3–25 (2006).

    Article  Google Scholar 

  5. 5.

    Johnson, C. I., Argyle, D. J. & Clements, D. N. In vitro models for the study of osteoarthritis. Vet. J. 209, 40–49 (2016).

    Article  Google Scholar 

  6. 6.

    Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Kutzner, I. et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43, 2164–2173 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Mow, V. C., Ratcliffe, A. & Robin Poole, A. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13, 67–97 (1992).

    CAS  Article  Google Scholar 

  9. 9.

    Grodzinsky, A. J., Levenston, M. E., Jin, M. & Frank, E. H. Cartilage tissue remodelling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2, 691–713 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    Choi, J. B. et al. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J. Biomech. 40, 2596–2603 (2007).

    Article  Google Scholar 

  11. 11.

    Lin, H., Lozito, T. P., Alexander, P. G., Gottardi, R. & Tuan, R. S. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Mol. Pharm. 11, 2203–2212 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Goldman, S. M. & Barabino, G. A. Spatial engineering of osteochondral tissue constructs through microfluidically directed differentiation of mesenchymal stem cells. Biores. Open Access 5, 109–117 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Mumme, M. et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet 388, 1985–1994 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Kafienah, W. et al. Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng. 8, 817–826 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Tsimbouri, P. M. et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat. Biomed. Eng. 1, 758–770 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Lee, D. A. & Bader, D. L. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15, 181–188 (1997).

    Article  Google Scholar 

  17. 17.

    De Croos, J. N. A., Dhaliwal, S. S., Grynpas, M. D., Pilliar, R. M. & Kandel, R. A. Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol. 25, 323–331 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Khozoee, B., Mafi, P., Mafi, R. & Khan, W. Mechanical stimulation protocols of human derived cells in articular cartilage tissue engineering—a systematic review. Curr. Stem Cell Res. Ther. 12, 260–270 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Ugolini, G. S., Visone, R., Redaelli, A., Moretti, M. & Rasponi, M. Generating multicompartmental 3D biological constructs interfaced through sequential injections in microfluidic devices. Adv. Healthc. Mater. 6, 1601170 (2017).

    Article  Google Scholar 

  21. 21.

    Occhetta, P., Visone, R. & Rasponi, M. High-throughput microfluidic platform for 3D cultures of mesenchymal stem cells. Methods Mol. Biol. 1612, 303–323 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Ng, J. M. K., Gitlin, I., Stroock, A. D. & Whitesides, G. M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461–3473 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    Marsano, A. et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16, 599–610 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Visone, R. et al. A simple vacuum-based microfluidic technique to establish high-throughput organs-on-chip and 3D cell cultures at the microscale. Adv. Mater. Technol. 4, 1800319 (2019).

    Article  Google Scholar 

  25. 25.

    Ehrbar, M. et al. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8, 3000–3007 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Blum, M. M. & Ovaert, T. C. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding. J. Mech. Behav. Biomed. Mater. 14, 248–258 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Kalyanam, S. Poro-viscoelastic behavior of gelatin hydrogels under compression—implications for bioelasticity imaging. J. Biomech. Eng. 131, 081005 (2009).

    Article  Google Scholar 

  28. 28.

    DiSilvestro, M. R., Zhu, Q., Wong, M., Jurvelin, J. S. & Suh, J.-K. F. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I—simultaneous prediction of reaction force and lateral displacement. J. Biomech. Eng. 123, 191–197 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    Villanueva, I., Hauschulz, D. S., Mejic, D. & Bryant, S. J. Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking densities. Osteoarthr. Cartil. 16, 909–918 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24, 64–70 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Wu, J. Z., Herzog, W. & Epstein, M. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. J. Biomech. 31, 165–169 (1997).

    Article  Google Scholar 

  32. 32.

    Ray, A., Singh, P. N. P., Sohaskey, M. L., Harland, R. M. & Bandyopadhyay, A. Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 142, 1169–1179 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Nishioka, T. et al. ATX–LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation. Sci. Rep. 6, 23433 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Leijten, J. C. H. et al. Gremlin 1, frizzled‐related protein, and Dkk‐1 are key regulators of human articular cartilage homeostasis. Arthritis Rheumatol. 64, 3302–3312 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Takaishi, H., Kimura, T., Dalal, S., Okada, Y. & D’Armiento, J. Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr. Pharm. Biotechnol. 9, 47–54 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Flory, J. J. E., Fosang, A. J. & Knudson, W. The accumulation of intracellular ITEGE and DIPEN neoepitopes in bovine articular chondrocytes is mediated by CD44 internalization of hyaluronan. Arthritis Rheumatol. 54, 443–454 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    Bau, B. et al. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheumatol. 46, 2648–2657 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    Tsuchida, A. I. et al. Cytokine profiles in the joint depend on pathology, but are different between synovial fluid, cartilage tissue and cultured chondrocytes. Arthritis Res. Ther. 16, 441 (2014).

    Article  Google Scholar 

  39. 39.

    Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Leijten, J. C. H. et al. GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res. Ther. 15, R126 (2013).

    Article  Google Scholar 

  41. 41.

    Braddock, M. & Quinn, A. Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat. Rev. Drug Discov. 3, 330–339 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    Grodzinsky, A. J., Wang, Y., Kakar, S., Vrahas, M. S. & Evans, C. H. Intra‐articular dexamethasone to inhibit the development of post‐traumatic osteoarthritis. J. Orthop. Res. 35, 406–411 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Lim, H. et al. Inhibition of matrix metalloproteinase-13 expression in IL-1β-treated articular chondrocytes by a steroidal saponin, spicatoside A, and its cellular mechanisms of action. Arch. Pharm. Res. 38, 1108–1116 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Yan, B. et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat. Commun. 7, 11151 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Pal, B., Endisha, H., Zhang, Y. & Kapoor, M. mTOR: a potential therapeutic target in osteoarthritis? Drugs R. D. 15, 27–36 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Sasaki, H. et al. Autophagy modulates osteoarthritis‐related gene expression in human chondrocytes. Arthritis Rheumatol. 64, 1920–1928 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Zweers, M. C. et al. Celecoxib: considerations regarding its potential disease-modifying properties in osteoarthritis. Arthritis Res. Ther. 13, 239 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    Pavan, M., Galesso, D., Secchieri, C. & Guarise, C. Hyaluronic acid alkyl derivative: a novel inhibitor of metalloproteases and hyaluronidases. Int. J. Biol. Macromol. 84, 221–226 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Pavan, M., Galesso, D., Menon, G., Renier, D. & Guarise, C. Hyaluronan derivatives: alkyl chain length boosts viscoelastic behavior to depolymerization. Carbohydr. Polym. 97, 321–326 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J.-P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    Guarise, C. et al. Matrix metalloprotease 3 (MMP3) inhibition effect of a viscosupplement based on a hyaluronic acid amide derivative (HYADD4). Osteoarthr. Cartil. 26, S286–S287 (2018).

    Article  Google Scholar 

  52. 52.

    Moraes, C., Sun, Y. & Simmons, C. A. (Micro)managing the mechanical microenvironment. Integr. Biol. 3, 959–971 (2011).

    Article  Google Scholar 

  53. 53.

    Greaves, L. L., Gilbart, M. K., Yung, A. C., Kozlowski, P. & Wilson, D. R. Effect of acetabular labral tears, repair and resection on hip cartilage strain: a 7 T MR study. J. Biomech. 43, 858–863 (2010).

    Article  Google Scholar 

  54. 54.

    Wong, B. L. & Sah, R. L. Effect of a focal articular defect on cartilage deformation during patello-femoral articulation. J. Orthop. Res. 28, 1554–1561 (2010).

    Article  Google Scholar 

  55. 55.

    Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    CAS  Article  Google Scholar 

  56. 56.

    Barbero, A. et al. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartil. 12, 476–484 (2004).

    Article  Google Scholar 

  57. 57.

    Nam, J., Aguda, B. D., Rath, B. & Agarwal, S. Biomechanical thresholds regulate inflammation through the NF-κB pathway: experiments and modeling. PLoS ONE 4, e5262 (2009).

    Article  Google Scholar 

  58. 58.

    Hunter, C. J., Imler, S. M., Malaviya, P., Nerem, R. M. & Levenston, M. E. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23, 1249–1259 (2002).

    CAS  Article  Google Scholar 

  59. 59.

    Dreier, R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res. Ther. 12, 216 (2010).

    Article  Google Scholar 

  60. 60.

    Zhong, L. et al. Nitric oxide mediates crosstalk between interleukin 1β and WNT signaling in primary human chondrocytes by reducing DKK1 and FRZB expression. Int. J. Mol. Sci. 18, E2491 (2017).

    Article  Google Scholar 

  61. 61.

    Mobasheri, A., Bay-Jensen, A.-C., van Spil, W. E., Larkin, J. & Levesque, M. C. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers). Osteoarthr. Cartil. 25, 199–208 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Goldring, S. R. & Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016).

    Article  Google Scholar 

  63. 63.

    Yuan, X. L. et al. Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthr. Cartil. 22, 1077–1089 (2014).

    CAS  Article  Google Scholar 

  64. 64.

    Takayama, K. et al. Local intra-articular injection of rapamycin delays articular cartilage degeneration in a murine model of osteoarthritis. Arthritis Res. Ther. 16, 482 (2014).

    Article  Google Scholar 

  65. 65.

    Matsuzaki, T. et al. Intra-articular administration of gelatin hydrogels incorporating rapamycin–micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials 35, 9904–9911 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Lienemann, P. S., Lutolf, M. P. & Ehrbar, M. Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv. Drug Deliv. Rev. 64, 1078–1089 (2012).

    CAS  Article  Google Scholar 

  67. 67.

    DiSilvestro, M. R. & Suh, J. K. F. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34, 519–525 (2001).

    CAS  Article  Google Scholar 

  68. 68.

    Meng, Q., Jin, Z., Fisher, J. & Wilcox, R. Comparison between FEBio and Abaqus for biphasic contact problems. Proc. Inst. Mech. Eng. H 227, 1009–1019 (2013).

    Article  Google Scholar 

  69. 69.

    Ehrbar, M. et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100, 284–293 (2011).

    CAS  Article  Google Scholar 

  70. 70.

    Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in-situ delivery. Adv. Mater. 24, 64–70 (2012).

    CAS  Article  Google Scholar 

  71. 71.

    Farndale, R. W., Buttle, D. J. & Barrett, A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883, 173–177 (1986).

    CAS  Article  Google Scholar 

Download references


We are grateful to G. Pagenstert for provision of the articular cartilage biopsies. We also thank Fidia Farmaceutici (Italy) for provision of the HYADD 4 and LMW-HA compounds—in particular, D. Galesso, R. Beninatto and C. Guarise for feedback on the results. Device manufacturing was partially performed at PoliFAB—the micro- and nanofabrication facility of Politecnico di Milano. This work was partially funded by the Swiss National Science Foundation (numbers 310030_149614/1 and 310030_175660/1).

Author information




M.R., A.B. and P.O. conceived the project. M.R. and A.M. conceived the device. E.V. and A.M. implemented the finite element model and performed the simulations. A.M. performed the mechanical characterization of the device. A.M. and P.O. produced the devices. P.O. and A.M. performed and analysed the biological experiments. Q.V.-M. and M.E. produced the PEG gel. P.O., A.M., M.R., A.B. and I.M. wrote the manuscript. All authors discussed the results, commented on the manuscript and contributed to its final version.

Corresponding author

Correspondence to Andrea Barbero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures, tables, references and video captions.

Reporting Summary

Supplementary Video 1

PEG hydrogel strain field on 30% compression.

Supplementary Video 2

3D reconstruction of the COC in static culture or after HPC.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Occhetta, P., Mainardi, A., Votta, E. et al. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat Biomed Eng 3, 545–557 (2019). https://doi.org/10.1038/s41551-019-0406-3

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing