Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapidly separable microneedle patch for the sustained release of a contraceptive

Abstract

Women often have limited access to contraception, and barrier methods have low acceptance and a high failure rate, mostly due to incorrect use, which can result in unplanned pregnancies. Sustained-release formulations of contraceptive hormones are available, yet typically require their administration by trained personnel. Here, we report the design of a microneedle patch with rapidly separable biodegradable polylactic acid and polylactic-co-glycolic acid needles, and its application for the continuous release of levonorgestrel—a contraceptive hormone. Bubble structures between each microneedle and the patch backing allow the microneedles to efficiently penetrate skin under compression, and to snap off under shear within five seconds after patch administration. In rats, the microneedle patch was well tolerated, leaving little visible evidence of use, and maintained plasma concentrations of the hormone above the human therapeutic level for one month. Further development of the rapidly separable microneedle patch for self-administered, long-acting contraception could enable women to better control their fertility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and fabrication of rapidly separable microneedle patches.
Fig. 2: Characterization of rapidly separable microneedle patches.
Fig. 3: Mechanical performance of rapidly separable microneedle patches.
Fig. 4: Application of rapidly separable microneedle patches to porcine skin ex vivo.
Fig. 5: Histological images of microneedles embedded in porcine skin ex vivo.
Fig. 6: Release of LNG from rapidly separable microneedle patches in vitro and in vivo in rats.
Fig. 7: Imaging of dye release from rapidly separable microneedle patches in vivo in female Sprague Dawley rats.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the results in this study are available within the paper and its Supplementary Information. Source data for the figures in this study are available from figshare with the identifier https://doi.org/10.6084/m9.figshare.6025748.

References

  1. Sedgh, G., Singh, S. & Hussain, R. Intended and unintended pregnancies worldwide in 2012 and recent trends. Stud. Family Plan. 45, 301–314 (2014).

    Article  Google Scholar 

  2. Sedgh, G. et al. Abortion incidence between 1990 and 2014: global, regional, and subregional levels and trends. Lancet 388, 258–267 (2016).

    Article  Google Scholar 

  3. Rose, E. et al. The validity of teens’ and young adults’ self-reported condom use. Arch. Pediatr. Adolesc. Med. 163, 61–64 (2009).

    Article  Google Scholar 

  4. Macaluso, M. et al. Mechanical failure of the latex condom in a cohort of women at high STD risk. Sex. Transm. Dis. 26, 450–458 (1999).

    Article  CAS  Google Scholar 

  5. Galzote, R. M., Rafie, S., Teal, R. & Mody, S. K. Transdermal delivery of combined hormonal contraception: a review of the current literature. Int. J. Womens Health 9, 315–321 (2017).

    Article  CAS  Google Scholar 

  6. Mansour, D., Inki, P. & Gemzell-Danielsson, K. Efficacy of contraceptive methods: a review of the literature. Eur. J. Contracept. Reprod. Health Care 15, S19–S31 (2010).

    Article  Google Scholar 

  7. Petitti, D. B. et al. Stroke in users of low-dose oral contraceptives. New Engl. J. Med. 335, 8–15 (1996).

    Article  CAS  Google Scholar 

  8. Halpern, V. et al. Towards the development of a longer-acting injectable contraceptive: past research and current trends. Contraception 92, 3–9 (2015).

    Article  CAS  Google Scholar 

  9. Prescott, G. M. & Matthews, C. M. Long-acting reversible contraception: a review in special populations. Pharmacotherapy 34, 46–59 (2014).

    Article  Google Scholar 

  10. Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3, 1377–1397 (2011).

    Article  CAS  Google Scholar 

  11. Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T. & Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 107, 163–175 (2016).

    Article  CAS  Google Scholar 

  12. Sun, Y. et al. Synchronic release of two hormonal contraceptives for about one month from the PLGA microspheres: in vitro and in vivo studies. J. Control. Release 129, 192–199 (2008).

    Article  CAS  Google Scholar 

  13. Lee, B. K., Yun, Y. & Park, K. PLA micro- and nano-particles. Adv. Drug Deliv. Rev. 107, 176–191 (2016).

    Article  CAS  Google Scholar 

  14. Wu, L. F., Janagam, D. R., Mandrell, T. D., Johnson, J. R. & Lowe, T. L. Long-acting injectable hormonal dosage forms for contraception. Pharm. Res. 32, 2180–2191 (2015).

    Article  CAS  Google Scholar 

  15. Dicko, M. et al. Safety of immunization injections in Africa: not simply a problem of logistics. Bull. World Health Organ. 78, 163–169 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, Y. C., Park, J. H. & Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012).

    Article  CAS  Google Scholar 

  17. Li, G. H., Badkar, A., Nema, S., Kolli, C. S. & Banga, A. K. In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int. J. Pharm. 368, 109–115 (2009).

    Article  CAS  Google Scholar 

  18. Yu, J. C. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    Article  CAS  Google Scholar 

  19. Chen, M. C., Lin, Z. W. & Ling, M. H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 10, 93–101 (2016).

    Article  CAS  Google Scholar 

  20. Ye, Y. Q. et al. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv. Mater. 28, 3115–3121 (2016).

    Article  CAS  Google Scholar 

  21. Yao, G. T. et al. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: in vitro and in vivo characterization. Int. J. Pharm. 534, 378–386 (2017).

    Article  CAS  Google Scholar 

  22. Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010).

    Article  CAS  Google Scholar 

  23. DeMuth, P. C. et al. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat. Biotech. 31, 1082–1085 (2013).

    Article  CAS  Google Scholar 

  24. Chen, M. C., Huang, S. F., Lai, K. Y. & Ling, M. H. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 34, 3077–3086 (2013).

    Article  CAS  Google Scholar 

  25. Chen, X. F. et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J. Control. Release 139, 212–220 (2009).

    Article  CAS  Google Scholar 

  26. DeMuth, P. C. et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 12, 367–376 (2013).

    Article  CAS  Google Scholar 

  27. Park, J. H., Allen, M. G. & Prausnitz, M. R. Polymer microneedles for controlled-release drug delivery. Pharm. Res. 23, 1008–1019 (2006).

    Article  CAS  Google Scholar 

  28. Zhang, Y. Q. et al. Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano 11, 9223–9230 (2017).

    Article  CAS  Google Scholar 

  29. DeMuth, P. C., Garcia-Beltran, W. F., Ai-Ling, M. L., Hammond, P. T. & Irvine, D. J. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv. Funct. Mater. 23, 161–172 (2013).

    Article  CAS  Google Scholar 

  30. Gill, H. S., Denson, D. D., Burris, B. A. & Prausnitz, M. R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain 24, 585–594 (2008).

    Article  Google Scholar 

  31. Haq, M. I. et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed. Microdevices 11, 35–47 (2009).

    Article  CAS  Google Scholar 

  32. Norman, J. J. et al. Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine 32, 1856–1862 (2014).

    Article  Google Scholar 

  33. Rouphael, N. G. et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 390, 649–658 (2017).

    Article  CAS  Google Scholar 

  34. Daddona, P. E., Matriano, J. A., Mandema, J. & Maa, Y. F. Parathyroid hormone (1-34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm. Res. 28, 159–165 (2011).

    Article  CAS  Google Scholar 

  35. Hirobe, S. et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 57, 50–58 (2015).

    Article  CAS  Google Scholar 

  36. Uppuluri, C. T. et al. Microneedle-assisted transdermal delivery of Zolmitriptan: effect of microneedle geometry, in vitro permeation experiments, scaling analyses and numerical simulations. Drug Dev. Ind. Pharm. 43, 1292–1303 (2017).

    Article  CAS  Google Scholar 

  37. Polaneczky, M., Slap, G., Forke, C., Rappaport, A. & Sondheimer, S. The use of levonorgestrel implants (Norplant) for contraception in adolescent mothers. New Engl. J. Med. 331, 1201–1206 (1994).

    Article  CAS  Google Scholar 

  38. Sivin, I. Risks and benefits, advantages and disadvantages of levonorgestrel-releasing contraceptive implants. Drug. Saf. 26, 303–335 (2003).

    Article  CAS  Google Scholar 

  39. Prausnitz, M. R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56, 581–587 (2004).

    Article  CAS  Google Scholar 

  40. Bao, S. & Silverstein, B. Estimation of hand force in ergonomic job evaluations. Ergonomics 48, 288–301 (2005).

    Article  Google Scholar 

  41. Wang, S. H. et al. Controlled release of levonorgestrel from biodegradable poly(d,l-lactide-co-glycolide) microspheres: in vitro and in vivo studies. Int. J. Pharm. 301, 217–225 (2005).

    Article  CAS  Google Scholar 

  42. Zolnik, B. S. & Burgess, D. J. Evaluation of in vivo–in vitro release of dexamethasone from PLGA microspheres. J. Control. Release 127, 137–145 (2008).

    Article  CAS  Google Scholar 

  43. Doty, A. C. et al. Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres. J. Control. Release 256, 19–25 (2017).

    Article  CAS  Google Scholar 

  44. Fotherby, K. Levonorgestrel—clinical pharmacokinetics. Clin. Pharmacokinet. 28, 203–215 (1995).

    Article  CAS  Google Scholar 

  45. Kohn, J. E. DMPA self-administration can improve contraceptive access, continuation, and autonomy. Lancet Glob. Health 6, E481–E482 (2018).

    Article  Google Scholar 

  46. Novikova, N., Weisberg, E., Stanczyk, F. Z., Croxatto, H. B. & Fraser, I. S. Effectiveness of levonorgestrel emergency contraception given before or after ovulation—a pilot study. Contraception 75, 112–118 (2007).

    Article  CAS  Google Scholar 

  47. Anderson, J. M. & Shive, M. S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 64, 72–82 (2012).

    Article  Google Scholar 

  48. Higginbottom, G. M. A. et al. “I have to do what I believe”: Sudanese women’s beliefs and resistance to hegemonic practices at home and during experiences of maternity care in Canada. BMC Pregnancy Childb. 13, 51 (2013).

    Article  Google Scholar 

  49. Wang, Q. L., Zhu, D. D., Liu, X. B., Chen, B. Z. & Guo, X. D. Microneedles with controlled bubble sizes and drug distributions for efficient transdermal drug delivery. Sci. Rep. 6, 38755 (2016).

    Article  CAS  Google Scholar 

  50. Chu, L. Y., Choi, S. O. & Prausnitz, M. R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J. Pharm. Sci. 99, 4228–4238 (2010).

    Article  CAS  Google Scholar 

  51. Chu, L. Y. & Prausnitz, M. R. Separable arrowhead microneedles. J. Control. Release 149, 242–249 (2011).

    Article  CAS  Google Scholar 

  52. Zhu, D. D., Wang, Q. L., Liu, X. B. & Guo, X. D. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater. 41, 312–319 (2016).

    Article  CAS  Google Scholar 

  53. Zhu, D. D., Chen, B. Z., He, M. C. & Guo, X. D. Structural optimization of rapidly separating microneedles for efficient drug delivery. J. Ind. Eng. Chem. 51, 178–184 (2017).

    Article  CAS  Google Scholar 

  54. Abrams, L. S., Skee, D. A., Natarajan, J., Wong, F. A. & Lasseter, K. C. Multiple-dose pharmacokinetics of a contraceptive patch in healthy women participants. Contraception 64, 287–294 (2001).

    Article  CAS  Google Scholar 

  55. Sivin, I. et al. First week drug concentrations in women with levonorgestrel rod or Norplant (R) capsule implants. Contraception 56, 317–321 (1997).

    Article  CAS  Google Scholar 

  56. Huang, X. & Brazel, C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 73, 121–136 (2001).

    Article  CAS  Google Scholar 

  57. Wang, J., Wang, B. A. & Schwendeman, S. P. Characterization of the initial burst release of a model peptide from poly(d,l-lactide-co-glycolide) microspheres. J. Control. Release 82, 289–307 (2002).

    Article  CAS  Google Scholar 

  58. Avgoustakis, K. in Encyclopedia of Biomaterials and Biomedical Engineering 2259–2269 (Informa, New York, 2008).

  59. Lupron Depot (Leuprolide Acetate for Depot Suspension) (AbbVie, 2016).

  60. Larraneta, E., Lutton, R. E. M., Woolfson, A. D. & Donnelly, R. F. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mat. Sci. Eng. R 104, 1–32 (2016).

    Article  Google Scholar 

  61. Overcashier, D. E., Patapoff, T. W. & Hsu, C. C. Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse. J. Pharm. Sci. 88, 688–695 (1999).

    Article  CAS  Google Scholar 

  62. Penning, T. M., Lee, S. H., Jin, Y., Gutierrez, A. & Blair, I. A. Liquid chromatography-mass spectrometry (LC-MS) of steroid hormone metabolites and its applications. J. Steroid Biochem. Mol. Biol. 121, 546–555 (2010).

    Article  CAS  Google Scholar 

  63. Gabrielsson, J. & Weiner, D. Non-compartmental analysis. Methods Mol. Biol. 929, 377–389 (2012).

    Article  CAS  Google Scholar 

  64. Gibaldi, M. & Perrier, D. Pharmacokinetics 2nd edn (M. Dekker, New York, 1982).

Download references

Acknowledgements

We thank D. Owen, G. S. Kopf and J. Ayres of FHI 360 for valuable technical discussions and review of the manuscript, and D. Bondy and A. Troxler for administrative support. This publication is made possible by the generous support of the American people through the U.S. Agency for International Development (USAID) and was prepared under a subcontract funded by Family Health International under Cooperative Agreement No. AID-OAA-15-00045, funded by USAID. The content of this publication does not necessarily reflect the views, analysis or policies of FHI 360, USAID or the United States Government, nor does any mention of trade names, commercial products, or organizations imply endorsement by FHI 360, USAID or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

W.L., J.T., S.P.S. and M.R.P. designed the project. W.L. and M.R.P. wrote the manuscript, with contributions from R.N.T., J.T., M.R.F. and S.P.S. W.L., R.N.T. and J.T. performed the experiments. All authors analysed and interpreted the data.

Corresponding author

Correspondence to Mark R. Prausnitz.

Ethics declarations

Competing interests

M.R.P. is an inventor of patents licensed to companies developing microneedle-based products, a paid advisor to companies developing microneedle-based products, and a founder/shareholder of companies developing microneedle-based products (Micron Biomedical). This potential conflict of interest has been disclosed and is managed by Georgia Tech and Emory University.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, table, discussion and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Terry, R.N., Tang, J. et al. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng 3, 220–229 (2019). https://doi.org/10.1038/s41551-018-0337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0337-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research