Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The accretion of a solar mass per day by a 17-billion solar mass black hole

Abstract

Around a million quasars have been catalogued in the Universe by probing deeper and using new methods for discovery. However, the hardest ones to find seem to be the rarest and brightest specimens. Here we study the properties of the most luminous of all quasars found so far. These have been overlooked until recently, which demonstrates that modern all-sky surveys have much to reveal. The black hole in this quasar accretes around one solar mass per day onto an existing mass of 17 billion solar masses. In this process, the accretion disk alone releases a radiative energy of 2 × 1041 W. If the quasar is not strongly gravitationally lensed, then its broad-line region is expected to have the largest physical and angular diameter occurring in the Universe and this will allow the Very Large Telescope Interferometer to image its rotation and measure its black-hole mass directly. This will be an important test for broad-line region size–luminosity relationships, whose extrapolation has underpinned common black-hole mass estimates at high redshift.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The exceptional quasar J0529−4351.
Fig. 2: J0529−4351 in relation to other quasars.
Fig. 3: Light curves of J0529−4351.
Fig. 4: Spectrum of the J0529−4351 from the ESO 8.2 m VLT.
Fig. 5: Results of the continuum fitting for J0529−4351 using Markov chain Monte Carlo and slim-disk models.

Similar content being viewed by others

Data availability

Data from Data Release 3 (DR3) of the European Space Agency’s Gaia mission are publicly available (https://gea.esac.esa.int/archive/). NASA ATLAS data are available from https://fallingstar-data.com/forcedphot/. The SkyMapper Southern Survey data are available from https://skymapper.anu.edu.au/ (https://doi.org/10.25914/5f14eded2d116). The raw spectrum and calibration files from the ESO/VLT are available in the ESO archive at http://archive.eso.org/. A reduced spectrum is available from the authors on reasonable request.

Code availability

The spectral fitting code and the quasar continuum-fitting code were written by S.L. in Python and are publicly available on GitHub at https://github.com/samlaihei/PyQSpecFit (ref. 38) and https://github.com/samlaihei/BADFit (ref. 48).

References

  1. Schmidt, M. 3C 273: a star-like object with large red-shift. Nature 197, 1040 (1963).

    ADS  Google Scholar 

  2. Hoyle, F. & Fowler, W. A. Nature of strong radio sources. Nature 197, 533–535 (1963).

    ADS  Google Scholar 

  3. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  4. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982).

    ADS  Google Scholar 

  5. Boyle, B. J. et al. The 2dF QSO Redshift Survey – I. The optical luminosity function of quasi-stellar objects. Mon. Not. R. Astron. Soc. 317, 1014–1022 (2000).

    ADS  Google Scholar 

  6. Richards, G. T. et al. The Sloan Digital Sky Survey quasar survey: quasar luminosity function from Data Release 3. Astron. J. 131, 2766–2787 (2006).

    ADS  Google Scholar 

  7. Tucci, M. & Volonteri, M. Constraining supermassive black hole evolution through the continuity equation. Astron. Astrophys. 600, A64 (2017).

    ADS  Google Scholar 

  8. Bardeen, J. M. Kerr metric black holes. Nature 226, 64–65 (1970).

    ADS  Google Scholar 

  9. Davis, S. W. & Laor, A. The radiative efficiency of accretion flows in individual active galactic nuclei. Astrophys. J. 728, 98 (2011).

    ADS  Google Scholar 

  10. Dexter, J. & Agol, E. Quasar accretion disks are strongly inhomogeneous. Astrophys. J. Lett. 727, L24 (2011).

    ADS  Google Scholar 

  11. Slone, O. & Netzer, H. The effects of disc winds on the spectrum and black hole growth rate of active galactic nuclei. Mon. Not. R. Astron. Soc. 426, 656–664 (2012).

    ADS  Google Scholar 

  12. Campitiello, S., Ghisellini, G., Sbarrato, T. & Calderone, G. How to constrain mass and spin of supermassive black holes through their disk emission. Astron. Astrophys. 612, A59 (2018).

    ADS  Google Scholar 

  13. Starkey, D. A., Huang, J., Horne, K. & Lin, D. N. C. Rimmed and rippled accretion disc models to explain AGN continuum lags. Mon. Not. R. Astron. Soc. 519, 2754–2768 (2023).

    ADS  Google Scholar 

  14. Lai, S., Wolf, C., Onken, C. A. & Bian, F. Characterising SMSS J2157–3602, the most luminous known quasar, with accretion disc models. Mon. Not. R. Astron. Soc. 521, 3682–3698 (2023).

    ADS  Google Scholar 

  15. Flesch, E. W. Identification confusion and blending concealment in the SDSS-DR16 quasar catalogues – 40 new quasars and 82 false quasars identified. Mon. Not. R. Astron. Soc. 504, 621–635 (2021).

    ADS  Google Scholar 

  16. Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015).

    ADS  Google Scholar 

  17. Eilers, A.-C. et al. EIGER. III. JWST/NIRCam observations of the ultraluminous high-redshift quasar J0100+2802. Astrophys. J. 950, 68 (2023).

    ADS  Google Scholar 

  18. Wolf, C. et al. Discovery of the most ultra-luminous QSO using Gaia, SkyMapper, and WISE. Publ. Astron. Soc. Aust. 35, e024 (2018).

    ADS  Google Scholar 

  19. Volonteri, M. Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010).

    ADS  Google Scholar 

  20. Volonteri, M., Silk, J. & Dubus, G. The case for supercritical accretion onto massive black holes at high redshift. Astrophys. J. 804, 148 (2015).

    ADS  Google Scholar 

  21. Amarantidis, S. et al. The first supermassive black holes: indications from models for future observations. Mon. Not. R. Astron. Soc. 485, 2694–2709 (2019).

    ADS  Google Scholar 

  22. Zubovas, K. & King, A. High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion. Mon. Not. R. Astron. Soc. 501, 4289–4297 (2021).

    ADS  Google Scholar 

  23. Onken, C. A. et al. AllBRICQS: the All-sky BRIght, Complete Quasar Survey. Publ. Astron. Soc. Aust. 40, e010 (2023).

    ADS  Google Scholar 

  24. Walsh, D., Carswell, R. F. & Weymann, R. J. 0957+561 A, B: twin quasistellar objects or gravitational lens? Nature 279, 381–384 (1979).

    ADS  Google Scholar 

  25. Lemon, C. et al. Gravitationally lensed quasars in Gaia – IV. 150 new lenses, quasar pairs, and projected quasars. Mon. Not. R. Astron. Soc. 520, 3305–3328 (2023).

    ADS  Google Scholar 

  26. Irwin, M. J., Ibata, R. A., Lewis, G. F. & Totten, E. J. APM 08279+5255: an ultraluminous broad absorption line quasar at a redshift z = 3.87. Astrophys. J. 505, 529–535 (1998).

    ADS  Google Scholar 

  27. Patnaik, A. R., Browne, I. W. A., Walsh, D., Chaffee, F. H. & Foltz, C. B. B 1422+231: a new gravitationally lensed system at z = 3.62. Mon. Not. R. Astron. Soc. 259, 1P–4 (1992).

    ADS  Google Scholar 

  28. Egami, E. et al. APM 08279+5255: Keck near- and mid-infrared high-resolution imaging. Astrophys. J. 535, 561–574 (2000).

    ADS  Google Scholar 

  29. Chen, Y.-C. et al. Varstrometry for off-nucleus and dual subkiloparsec AGN (VODKA): Hubble Space Telescope discovers double quasars. Astrophys. J. 925, 162 (2022).

    ADS  Google Scholar 

  30. Chen, H.-W. et al. An empirical characterization of extended cool gas around galaxies using Mg II absorption features. Astrophys. J. 714, 1521–1541 (2010).

    ADS  Google Scholar 

  31. Mason, C. A. et al. Correcting the z 8 galaxy luminosity function for gravitational lensing magnification bias. Astrophys. J. 805, 79 (2015).

    ADS  Google Scholar 

  32. Yue, M., Fan, X., Yang, J. & Wang, F. Revisiting the lensed fraction of high-redshift quasars. Astrophys. J. 925, 169 (2022).

    ADS  Google Scholar 

  33. Tonry, J. L. et al. Atlas: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    ADS  Google Scholar 

  34. Onken, C. A. et al. SkyMapper Southern Survey: second data release (DR2). Publ. Astron. Soc. Aust. 36, e033 (2019).

    ADS  Google Scholar 

  35. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    ADS  Google Scholar 

  36. McConnell, D. et al. The Rapid ASKAP Continuum Survey I: design and first results. Publ. Astron. Soc. Aust. 37, e048 (2020).

    ADS  Google Scholar 

  37. Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B. & Green, R. VLA observations of objects in the Palomar Bright Quasar Survey. Astron. J. 98, 1195–1207 (1989).

  38. Lai, S. samlaihei/pyqspecfit: Pyqspecfit v.1.0.0. Zenodo https://doi.org/10.5281/zenodo.7772752 (2023).

  39. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. Ser. 166, 470–497 (2006).

    ADS  Google Scholar 

  40. Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).

    ADS  Google Scholar 

  41. Yu, Q. & Tremaine, S. Observational constraints on growth of massive black holes. Mon. Not. R. Astron. Soc. 335, 965–976 (2002).

    ADS  Google Scholar 

  42. Calderone, G., Ghisellini, G., Colpi, M. & Dotti, M. Black hole mass estimate for a sample of radio-loud narrow-line Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 431, 210–239 (2013).

    ADS  Google Scholar 

  43. Capellupo, D. M., Netzer, H., Lira, P., Trakhtenbrot, B. & Mejía-Restrepo, J. Active galactic nuclei at z  1.5–I. Spectral energy distribution and accretion discs. Mon. Not. R. Astron. Soc. 446, 3427–3446 (2015).

    ADS  Google Scholar 

  44. Mejía-Restrepo, J. E., Lira, P., Netzer, H., Trakhtenbrot, B. & Capellupo, D. M. The effect of nuclear gas distribution on the mass determination of supermassive black holes. Nat. Astron. 2, 63–68 (2018).

    ADS  Google Scholar 

  45. Campitiello, S., Celotti, A., Ghisellini, G. & Sbarrato, T. Estimating black hole masses: accretion disk fitting versus reverberation mapping and single epoch. Astron. Astrophys. 640, A39 (2020).

    ADS  Google Scholar 

  46. Abramowicz, M. A., Czerny, B., Lasota, J. P. & Szuszkiewicz, E. Slim accretion disks. Astrophys. J. 332, 646–658 (1988).

    ADS  Google Scholar 

  47. Sadowski, A. et al. Relativistic slim disks with vertical structure. Astron. Astrophys. 527, A17 (2011).

    Google Scholar 

  48. Lai, S. samlaihei/badfit: Badfit v.1.0.0. Zenodo https://doi.org/10.5281/zenodo.7772748 (2023).

  49. Laor, A. & Davis, S. W. Cold accretion discs and lineless quasars. Mon. Not. R. Astron. Soc. 417, 681–688 (2011).

    ADS  Google Scholar 

  50. Malkan, M. A. The ultraviolet excess of luminous quasars. II. Evidence for massive accretion disks. Astrophys. J. 268, 582–590 (1983).

    ADS  Google Scholar 

  51. GRAVITY Collaboration. Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale. Nature 563, 657–660 (2018).

  52. McLure, R. J. & Jarvis, M. J. Measuring the black hole masses of high-redshift quasars. Mon. Not. R. Astron. Soc. 337, 109–116 (2002).

    ADS  Google Scholar 

  53. Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).

    ADS  Google Scholar 

  54. Peterson, B. M. et al. Central masses and broad-line region sizes of active galactic nuclei. II. A homogeneous analysis of a large reverberation-mapping database. Astrophys. J. 613, 682–699 (2004).

    ADS  Google Scholar 

  55. Coatman, L. et al. Correcting C IV-based virial black hole masses. Mon. Not. R. Astron. Soc. 465, 2120–2142 (2017).

    ADS  Google Scholar 

  56. Vestergaard, M. & Osmer, P. S. Mass functions of the active black holes in distant quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the color-selected sample of the SDSS Fall Equatorial Stripe. Astrophys. J. 699, 800–816 (2009).

    ADS  Google Scholar 

  57. Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey Data Release 7. Astrophys. J. Suppl. Ser. 194, 45 (2011).

    ADS  Google Scholar 

  58. Shen, Y., Greene, J. E., Strauss, M. A., Richards, G. T. & Schneider, D. P. Biases in virial black hole masses: an SDSS perspective. Astrophys. J. 680, 169–190 (2008).

    ADS  Google Scholar 

  59. Lai, S. et al. Virial black hole mass estimates of quasars in the XQ-100 legacy survey. Mon. Not. R. Astron. Soc. 526, 3230–3247 (2023).

    ADS  Google Scholar 

  60. Tsukui, T. & Iguchi, S. Spiral morphology in an intensely star-forming disk galaxy more than 12 billion years ago. Science 372, 1201–1205 (2021).

    ADS  MathSciNet  Google Scholar 

  61. Bañados, E. et al. The z = 7.54 quasar ULAS J1342+0928 is hosted by a galaxy merger. Astrophys. J. Lett. 881, L23 (2019).

    ADS  Google Scholar 

  62. Bischetti, M. et al. The WISSH quasars project. IX. Cold gas content and environment of luminous QSOs at z 2.4–4.7. Astron. Astrophys. 645, A33 (2021).

    Google Scholar 

  63. Onken, C. A. et al. Discovery of the most luminous quasar of the last 9 Gyr. Publ. Astron. Soc. Aust. 39, e037 (2022).

    ADS  Google Scholar 

  64. Webster, R. L., Francis, P. J., Petersont, B. A., Drinkwater, M. J. & Masci, F. J. Evidence for a large undetected population of dust-reddened quasars. Nature 375, 469–471 (1995).

    ADS  Google Scholar 

  65. Warren, S. J., Hewett, P. C. & Foltz, C. B. The KX method for producing K-band flux-limited samples of quasars. Mon. Not. R. Astron. Soc. 312, 827–832 (2000).

    ADS  Google Scholar 

  66. Wisotzki, L. et al. The Hamburg/ESO survey for bright QSOs. III. A large flux-limited sample of QSOs. Astron. Astrophys. 358, 77–87 (2000).

    ADS  Google Scholar 

  67. Fan, X. et al. High-redshift quasars found in Sloan Digital Sky Survey commissioning data. III. A color-selected sample at I* < 20 in the Fall Equatorial Stripe. Astron. J. 121, 31–53 (2001).

    ADS  Google Scholar 

  68. Wolf, C. et al. The evolution of faint AGN between z ≈ 1 and z ≈ 5 from the COMBO-17 survey. Astron. Astrophys. 408, 499–514 (2003).

    ADS  Google Scholar 

  69. Stern, D. et al. Mid-infrared selection of active galaxies. Astrophys. J. 631, 163–168 (2005).

    ADS  Google Scholar 

  70. Richards, G. T. et al. Efficient photometric selection of quasars from the Sloan Digital Sky Survey. II. 1,000,000 quasars from Data Release 6. Astrophys. J. Suppl. Ser. 180, 67–83 (2009).

    ADS  Google Scholar 

  71. Ivezić, Ž. et al. in Multiwavelength AGN Surveys and Studies Vol. 304 (eds Mickaelian, A. M. & Sanders, D. B.) 11–17 (IAUS, 2014).

  72. Reed, S. L. et al. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations. Mon. Not. R. Astron. Soc. 468, 4702–4718 (2017).

    ADS  Google Scholar 

  73. Calderone, G. et al. Finding the brightest cosmic beacons in the southern hemisphere. Astrophys. J. 887, 268 (2019).

    ADS  Google Scholar 

  74. Yang, Q. & Shen, Y. A southern photometric quasar catalog from the Dark Energy Survey Data Release 2. Astrophys. J. Suppl. Ser. 264, 9 (2023).

    ADS  Google Scholar 

  75. Storey-Fisher, K. et al. Quaia, the Gaia-unWISE quasar catalog: an all-sky spectroscopic quasar sample. Preprint at https://doi.org/10.48550/arXiv.2306.17749 (2023).

  76. Delchambre, L. et al. Gaia DR3: Apsis III – non-stellar content and source classification. Astron. Astrophys. 674, A31 (2023).

    Google Scholar 

  77. Fu, Y. et al. Finding quasars behind the galactic plane. II. Spectroscopic identifications of 204 quasars at b < 20°. Astrophys. J. Suppl. Ser. 261, 32 (2022).

    ADS  Google Scholar 

  78. Bentz, M. C. et al. The low-luminosity end of the radius–luminosity relationship for active galactic nuclei. Astrophys. J. 767, 149 (2013).

    ADS  Google Scholar 

  79. Sandage, A. The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136, 319–333 (1962).

  80. Liske, J. et al. Cosmic dynamics in the era of extremely large telescopes. Mon. Not. R. Astron. Soc. 386, 1192–1218 (2008).

    ADS  Google Scholar 

  81. Cristiani, S. et al. Spectroscopy of QUBRICS quasar candidates: 1672 new redshifts and a golden sample for the Sandage test of the redshift drift. Mon. Not. R. Astron. Soc. 522, 2019–2028 (2023).

    ADS  Google Scholar 

  82. Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

  83. Dey, A. et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 157, 168 (2019).

    ADS  Google Scholar 

  84. Fabricius, C. et al. Gaia Early Data Release 3. Catalogue validation. Astron. Astrophys. 649, A5 (2021).

    Google Scholar 

  85. Lemon, C. Gravitationally Lensed Quasar Database (University of Cambrdige); https://research.ast.cam.ac.uk/lensedquasars/

  86. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Google Scholar 

  87. Prochaska, J. X. et al. Pypeit: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    ADS  Google Scholar 

  88. Vestergaard, M. & Wilkes, B. J. An empirical ultraviolet template for iron emission in quasars as derived from I Zwicky 1. Astrophys. J. Suppl. Ser. 134, 1–33 (2001).

    ADS  Google Scholar 

  89. Tsuzuki, Y. et al. Fe II emission in 14 low-redshift quasars. I. Observations. Astrophys. J. 650, 57–79 (2006).

    ADS  Google Scholar 

  90. Mejía-Restrepo, J. E., Trakhtenbrot, B., Lira, P., Netzer, H. & Capellupo, D. M. Active galactic nuclei at z 1.5 – II. Black hole mass estimation by means of broad emission lines. Mon. Not. R. Astron. Soc. 460, 187–211 (2016).

    ADS  Google Scholar 

  91. Bruhweiler, F. & Verner, E. Modeling Fe II emission and revised Fe II (UV) empirical templates for the Seyfert 1 galaxy I Zw 1. Astrophys. J. 675, 83–95 (2008).

    ADS  Google Scholar 

  92. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    ADS  Google Scholar 

  93. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Google Scholar 

  94. Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999).

    ADS  Google Scholar 

  95. Marocco, F. et al. The CatWISE2020 catalog. Astrophys. J. Suppl. Ser. 253, 8 (2021).

    ADS  Google Scholar 

  96. Selsing, J., Fynbo, J. P. U., Christensen, L. & Krogager, J. K. An X-Shooter composite of bright 1 < z < 2 quasars from UV to infrared. Astron. Astrophys. 585, A87 (2016).

    ADS  Google Scholar 

  97. Temple, M. J., Banerji, M., Hewett, P. C., Rankine, A. L. & Richards, G. T. Exploring the link between C IV outflow kinematics and sublimation-temperature dust in quasars. Mon. Not. R. Astron. Soc. 501, 3061–3073 (2021).

    ADS  Google Scholar 

  98. Davis, S. W., Blaes, O. M., Hubeny, I. & Turner, N. J. Relativistic accretion disk models of high-state black hole X-ray binary spectra. Astrophys. J. 621, 372–387 (2005).

    ADS  Google Scholar 

  99. Davis, S. W. & Hubeny, I. A grid of relativistic, non-LTE accretion disk models for spectral fitting of black hole binaries. Astrophys. J. Suppl. Ser. 164, 530–535 (2006).

    ADS  Google Scholar 

  100. Li, L.-X., Zimmerman, E. R., Narayan, R. & McClintock, J. E. Multitemperature blackbody spectrum of a thin accretion disk around a Kerr black hole: model computations and comparison with observations. Astrophys. J. Suppl. Ser. 157, 335–370 (2005).

    ADS  Google Scholar 

  101. Krawczyk, C. M. et al. Mining for dust in type 1 quasars. Astron. J. 149, 203 (2015).

    ADS  Google Scholar 

  102. Astropy Collaboration et al. The Astropy project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) through Discovery Project DP190100252 (C.W., F.B., C.A.O. and S.L.). S.L. is grateful to the Research School of Astronomy and Astrophysics at the Australian National University (ANU) for funding his Ph.D. studentship. We thank G. Ferrami from the University of Melbourne for discussing solutions for strong gravitational lensing. Data for this project were obtained at the European Southern Observatory through DDT proposal 2110.B-5032. This work has made use of data from the European Space Agency mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by NASA. SuperCOSMOS Sky Survey material is based on photographic data originating from the UK, Palomar and ESO Schmidt telescopes and is provided by the Wide-Field Astronomy Unit, Institute for Astronomy, University of Edinburgh. This work made use of Astropy (http://www.astropy.org), a community-developed core Python package and an ecosystem of tools and resources for astronomy102. This research has made use of the SVO Filter Profile Service (http://svo2.cab.inta-csic.es/theory/fps/) supported from the Spanish MINECO through grant AYA2017-84089. The national facility capability for SkyMapper has been funded through ARC LIEF grant LE130100104 from the Australian Research Council, awarded to the University of Sydney, the ANU, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University and the Australian Astronomical Observatory. SkyMapper is owned and operated by The ANU’s Research School of Astronomy and Astrophysics. The survey data were processed and provided by the SkyMapper Team at ANU. The SkyMapper node of the All-Sky Virtual Observatory is hosted at the National Computational Infrastructure. Development and support of the SkyMapper node of the All-Sky Virtual Observatory has been funded in part by Astronomy Australia Limited and the Australian Government through the Commonwealth’s Education Investment Fund and the National Collaborative Research Infrastructure Strategy, in particular, the National eResearch Collaboration Tools and Resources and the Australian National Data Service Projects. This work uses data from the University of Hawaii’s ATLAS project, funded through NASA grants NN12AR55G, 80NSSC18K0284 and 80NSSC18K1575, with contributions from the Queen’s University Belfast, the Space Telescope Science Institute, the South African Astronomical Observatory and the Millennium Institute of Astrophysics, Chile.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data collection. S.L. led the data analysis with contributions from C.A.O. and C.W. C.W. selected the quasar candidates and led the drafting and editing of the paper.

Corresponding author

Correspondence to Christian Wolf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, C., Lai, S., Onken, C.A. et al. The accretion of a solar mass per day by a 17-billion solar mass black hole. Nat Astron 8, 520–529 (2024). https://doi.org/10.1038/s41550-024-02195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02195-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing