Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectroscopic sizing of interstellar icy grains with JWST

Abstract

Clouds of gas and dust in the Galaxy are nurseries in which stars and planetary systems are born. During their journey from the diffuse interstellar medium to the protoplanetary disks, molecular solids accumulate on cold dust grains by accretion and surface chemistry. These so-called icy grains will continuously evolve, notably by collision and aggregation processes, modifying their sizes. Our ‘Ice Age’ James Webb Space Telescope observations of the dense Chamaeleon I cloud reveal that this growth starts early, before the protostellar phase, substantially modifying the ice band profiles in the spectra. Spectral analysis confirms that the grains reach micrometre sizes, implying myriad changes in local microphysics, including mass transfer from small to large grains, reduction in the grain surface available for chemistry and modification of the penetration and propagation of radiation fields. Deformation of the observed profiles complicates the determination of chemical abundance. Observing the extensive icy grain growth in dense clouds quantitatively constrains the grain size evolution before star and planet formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Grain growth influences IR spectral profiles.
Fig. 2: Grain growth models for NIR38.
Fig. 3: Grain growth models for NIR38 and J110621, ice model 3.

Similar content being viewed by others

Data availability

Observational raw data are publicly available in the STScI MAST JWST archive. Text files of observed enhanced one-dimensional spectra, including error bars, are provided as part of our Early Release Science enabling product deliverables on Zenodo at https://doi.org/10.5281/zenodo.7501239. Data files of optical constants of amorphous carbon from ref. 39 are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/C2; optical constants of silicates are described in ref. 38; pure carbon monoxide ice optical constants from ref. 43 can be retrieved from the Catania Experimental Astrophysics Laboratory at the URL http://www.ct.astro.it/lasp/optico.html. The optical constants of ice mixtures can be retrieved from the DREAM database at http://www.dream-database.fr/.

Code availability

The grain growth model was run using a custom code, incorporating publicly available elements, such as DDSCAT (v.7.3), as described in ref. 37 (http://www.ddscat.org), and RADMC-3D radiative transfer code, as described in ref. 48 (https://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/). The POV-Ray tool was used for some illustrations (http://www.povray.org/).

References

  1. Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

    ADS  CAS  Google Scholar 

  2. McClure, M. Observational 5-20 μm interstellar extinction curves toward star-forming regions derived from Spitzer IRS spectra. Astrophys. J. 693, L81–L85 (2009).

    ADS  CAS  Google Scholar 

  3. Flaherty, K. M. et al. Infrared extinction toward nearby star-forming regions. Astrophys. J. 663, 1069–1082 (2007).

    ADS  CAS  Google Scholar 

  4. Chapman, N. L., Mundy, L. G., Lai, S.-P., Evans, I. & Neal, J. The mid-infrared extinction law in the Ophiuchus, Perseus, and Serpens molecular clouds. Astrophys. J. 690, 496–511 (2009).

    ADS  CAS  Google Scholar 

  5. Jones, A. P. et al. Mantle formation, coagulation, and the origin of cloud/core shine. I. Modelling dust scattering and absorption in the infrared. Astron. Astrophys. 588, A43 (2016).

    Google Scholar 

  6. Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001).

    ADS  Google Scholar 

  7. Madden, M. C. L. et al. Infrared spectroscopic survey of the quiescent medium of nearby clouds. II. Ice formation and grain growth in Perseus and Serpens. Astrophys. J. 930, 2 (2022).

    ADS  Google Scholar 

  8. Ysard, N., Koehler, M., Jimenez-Serra, I., Jones, A. P. & Verstraete, L. From grains to pebbles: The influence of size distribution and chemical composition on dust emission properties. Astron. Astrophys. 631, A88 (2019).

    ADS  CAS  Google Scholar 

  9. Boogert, A. C. A. et al. Infrared spectroscopic survey of the quiescent medium of nearby clouds. I. Ice formation and grain growth in Lupus. Astrophys. J. 777, 73 (2013).

    ADS  Google Scholar 

  10. van Breemen, J. M. et al. The 9.7 and 18 μm silicate absorption profiles towards diffuse and molecular cloud lines-of-sight. Astron. Astrophys. 526, A152 (2011).

    Google Scholar 

  11. Chiar, J. E. et al. The relationship between the optical depth of the 9.7 μm silicate absorption feature and infrared differential extinction in dense clouds. Astrophys. J. Lett. 666, L73–L76 (2007).

    ADS  CAS  Google Scholar 

  12. Ysard, N. et al. Mantle formation, coagulation, and the origin of cloud/core shine. II. Comparison with observations. Astron. Astrophys. 588, A44 (2016).

    Google Scholar 

  13. Saajasto, M., Juvela, M. & Malinen, J. Near-infrared scattering as a dust diagnostic. Astron. Astrophys. 614, A95 (2018).

    ADS  Google Scholar 

  14. Steinacker, J. et al. Grain size limits derived from 3.6 μm and 4.5 μm coreshine. Astron. Astrophys. 582, A70 (2015).

    Google Scholar 

  15. Marchand, P., Guillet, V., Lebreuilly, U. & Mac Low, M. M. Fast methods for tracking grain coagulation and ionization. II. Extension to thermal ionization. Astron. Astrophys. 666, A27 (2022).

    ADS  CAS  Google Scholar 

  16. Silsbee, K., Ivlev, A. V., Sipilä, O., Caselli, P. & Zhao, B. Rapid elimination of small dust grains in molecular clouds. Astron. Astrophys. 641, A39 (2020).

    ADS  CAS  Google Scholar 

  17. Lebreuilly, U., Commerçon, B. & Laibe, G. Small dust grain dynamics on adaptive mesh refinement grids. I. Methods. Astron. Astrophys. 626, A96 (2019).

    ADS  CAS  Google Scholar 

  18. Paruta, P., Hendrix, T. & Keppens, R. Dust grain coagulation modelling: From discrete to continuous. Astronomy and Computing 16, 155–165 (2016).

    ADS  Google Scholar 

  19. Ormel, C. W. An atmospheric structure equation for grain growth. Astrophys. J. Lett. 789, L18 (2014).

    ADS  Google Scholar 

  20. Smith, R. G., Sellgren, K. & Tokunaga, A. T. Absorption features in the 3 micron spectra of protostars. Astrophys. J. 344, 413 (1989).

    ADS  CAS  Google Scholar 

  21. Dartois, E., d’Hendecourt, L., Thi, W., Pontoppidan, K. M. & van Dishoeck, E. F. Combined VLT ISAAC/ISO SWS spectroscopy of two protostellar sources. The importance of minor solid state features. Astron. Astrophys. 394, 1057–1068 (2002).

    ADS  CAS  Google Scholar 

  22. Noble, J. A., Fraser, H. J., Aikawa, Y., Pontoppidan, K. M. & Sakon, I. A survey of H2O, CO2, and CO ice features toward background stars and low-mass young stellar objects using Akari. Astrophys. J. 775, 85 (2013).

    ADS  Google Scholar 

  23. McClure, M. K. et al. An Ice Age JWST inventory of dense molecular cloud ices. Nat. Astron. 7, 431–443 (2023).

    ADS  Google Scholar 

  24. Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A. & Tielens, A. G. G. M. Interstellar ice: The infrared space observatory legacy. Astrophys. J. Suppl. Ser. 151, 35–73 (2004).

    ADS  CAS  Google Scholar 

  25. Dartois, E. The ice survey opportunity of ISO. Space Sci. Rev. 119, 293–310 (2005).

    ADS  CAS  Google Scholar 

  26. Boogert, A. C. A., Gerakines, P. A. & Whittet, D. C. B. Observations of the icy universe. Annu. Rev. Astron. Astrophys. 53, 541–581 (2015).

    ADS  CAS  Google Scholar 

  27. Dartois, E., Noble, J. A., Ysard, N., Demyk, K. & Chabot, M. Influence of grain growth on CO2 ice spectroscopic profiles. Modelling for dense cores and disks. Astron. Astrophys. 666, A153 (2022).

    ADS  CAS  Google Scholar 

  28. Ehrenfreund, P., Boogert, A., Gerakines, P. & Tielens, A. Apolar ices. Faraday Discussions 109, 463 (1998).

    ADS  CAS  Google Scholar 

  29. Dartois, E. & Bauerecker, S. Infrared analysis of CO ice particles in the aerosol phase. J. Chem. Phys. 128, 154715 (2008).

    ADS  PubMed  Google Scholar 

  30. Dartois, E. Spectroscopic evidence of grain ice mantle growth in YSOs. I. CO ice modeling and limiting cases. Astron. Astrophys. 445, 959–970 (2006).

    ADS  CAS  Google Scholar 

  31. Dartois, E. & d’Hendecourt, L. Search for NH3 ice in cold dust envelopes around YSOs. Astron. Astrophys. 365, 144–156 (2001).

    ADS  CAS  Google Scholar 

  32. van Broekhuizen, F. A., Pontoppidan, K. M., Fraser, H. J. & van Dishoeck, E. F. A 3–5 m VLT spectroscopic survey of embedded young low mass stars II: Solid OCN. Astron. Astrophys. 441, 249–260 (2005).

    ADS  Google Scholar 

  33. Boogert, A. C. A., Brewer, K., Brittain, A. & Emerson, K. S. Survey of ices toward massive young stellar objects. I. OCS, CO, OCN, and CH3OH. Astrophys. J. 941, 32 (2022).

    ADS  Google Scholar 

  34. Ormel, C. W., Paszun, D., Dominik, C. & Tielens, A. G. G. M. Dust coagulation and fragmentation in molecular clouds. I. How collisions between dust aggregates alter the dust size distribution. Astron. Astrophys. 502, 845–869 (2009).

    ADS  Google Scholar 

  35. Husser, T. O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Google Scholar 

  36. Palacios, A. et al. POLLUX: a database of synthetic stellar spectra. Astron. Astrophys. 516, A13 (2010).

    Google Scholar 

  37. Draine, B. T. & Flatau, P. J. User guide for the discrete dipole approximation code DDSCAT 7.3. Preprint at https://arxiv.org/abs/1305.6497 (2013).

  38. Köhler, M., Jones, A. & Ysard, N. A hidden reservoir of Fe/FeS in interstellar silicates? Astron. Astrophys. 565, L9 (2014).

    ADS  Google Scholar 

  39. Jones, A. P. Variations on a theme—the evolution of hydrocarbon solids. II. Optical property modelling—the optEC(s) model. Astron. Astrophys. 540, A2 (2012).

    ADS  Google Scholar 

  40. Godard, M., Geballe, T. R., Dartois, E. & Muñoz Caro, G. M. The deep 3.4 μm interstellar absorption feature toward the IRAS 18511+0146 cluster. Astron. Astrophys. 537, A27 (2012).

    ADS  Google Scholar 

  41. Pendleton, Y. J., Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M. & Sellgren, K. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains. Astrophys. J. 437, 683 (1994).

    ADS  CAS  Google Scholar 

  42. Zhu, H., Tian, W., Li, A. & Zhang, M. The gas-to-extinction ratio and the gas distribution in the Galaxy. Mon. Not. R. Astron. Soc. 471, 3494–3528 (2017).

    ADS  CAS  Google Scholar 

  43. Palumbo, M. E., Baratta, G. A., Collings, M. P. & McCoustra, M. R. S. The profile of the 2140 cm-1 solid CO band on different substrates. Phys. Chem. Chem. Phys. 8, 279–284 (2006).

    CAS  PubMed  Google Scholar 

  44. Dartois, E. et al. Cosmic ray sputtering yield of interstellar ice mantles. CO and CO2 ice thickness dependence. Astron. Astrophys. 647, A177 (2021).

    CAS  Google Scholar 

  45. Rocha, W. R. M. et al. LIDA: The Leiden Ice Database for Astrochemistry. Astron. Astrophys. 668, A63 (2022).

    CAS  Google Scholar 

  46. Ehrenfreund, P. et al. Laboratory studies of thermally processed H2O-CH3OH-CO2 ice mixtures and their astrophysical implications. Astron. Astrophys. 350, 240–253 (1999).

    ADS  CAS  Google Scholar 

  47. Dartois, E. Les glaces interstellaires: interpretation par simulations en laboratoire des observations du satellite ISO. PhD thesis, Paris-VI (1998).

  48. Dullemond, C. P. et al. RADMC-3D: A multi-purpose radiative transfer tool. Astrophysics Source Code Library, record ascl 1202, 015 (2012).

    Google Scholar 

  49. Bouilloud, M. et al. Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Mon. Not. R. Astron. Soc. 451, 2145–2160 (2015).

    ADS  CAS  Google Scholar 

  50. Luna, R. et al. Densities, infrared band strengths, and optical constants of solid methanol. Astron. Astrophys. 617, A116 (2018).

    Google Scholar 

  51. Bottinelli, S. et al. The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. IV. NH3 and CH3OH. Astrophys. J. 718, 1100–1117 (2010).

    ADS  CAS  Google Scholar 

  52. Molpeceres, G. et al. Optical constants and band strengths of CH4:C2H6 ices in the near- and mid-infrared. Astrophys. J. 825, 156 (2016).

    ADS  Google Scholar 

  53. van Broekhuizen, F. A., Keane, J. V. & Schutte, W. A. A quantitative analysis of OCN formation in interstellar ice analogs. Astron. Astrophys. 415, 425–436 (2004).

    ADS  Google Scholar 

  54. Theule, P. et al. Kinetics of the OCN and HOCN formation from the HNCO + H2O thermal reaction in interstellar ice analogs. Astron. Astrophys. 530, A96 (2011).

    Google Scholar 

  55. Gálvez, O., Maté, B., Herrero, V. J. & Escribano, R. Ammonium and formate ions in interstellar ice analogs. Astrophys. J. 724, 539–545 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

We dedicate this article to the memory of Professor Harold Linnartz, our dear friend and colleague, who will be sadly missed by the whole Ice Age team. E.D., J.A.N., A.T. and V.W. acknowledge the support from the French Programme National ‘Physique et Chimie du Milieu Interstellaire’ of the CNRS/INSU with the INC/INP, co-funded by the CEA and the CNES. I.J.-S. acknowledges the financial support from grant number PID2019-105552RB-C41 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033. B.M. and V.J.H. acknowledge funding from the Spanish MIC grant PID2020-113084GB-I00/AEI/10.13039/501100011033. M.K.M. acknowledges the financial support from the Dutch Research Council (NWO; grant VI.Veni.192.241). Z.L.S. acknowledges financial support from the Royal Astronomical Society through the E. A. Milne Travelling Fellowships. A.C.A.B. and J.E. acknowledge support from the Space Telescope Science Institute for the programme JWST-ERS-01309.019. M.N.D. acknowledges the Swiss National Science Foundation Ambizione grant number 180079, Center for Space and Habitability Fellowship and IAU Gruber Foundation Fellowship. D.H. is supported by the Center for Informatics and Computation in Astronomy grant and from the Ministry of Education of Taiwan (grant number 110J0353I9). D.H. acknowledges support from the National Technology and Science Council of Taiwan through grant number 111B3005191. S.I. and H.L. acknowledge support from the Danish National Research Foundation through the Center of Excellence ‘InterCat’ (grant agreement number DNRF150). W.R.M.R. acknowledges support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 101019751 MOLDISK).

Author information

Authors and Affiliations

Authors

Contributions

Authorship is defined according to the CRediT taxonomy: E.D. was involved with conceptualisation, the methodology, software, validation, formal analysis, investigation, resources, writing of the original draft, reviewing and editing, visualisation, supervision and project administration. J.A.N. was involved with conceptualisation, the methodology, validation, formal analysis, investigation, resources, writing of the original draft, review and editing, visualisation, supervision, project administration and funding acquisition. P.C. was involved with investigation and writing of the original draft. H.J.F. was involved with methodology, validation, investigation, review and editing and project administration. I.J.-S. was involved with investigation, writing of the original draft and project administration. B.M. was involved with the methodology, validation, formal analysis, investigation and writing of the original draft. M.K.M. was involved with the methodology, validation, formal analysis, investigation, writing of the original draft, supervision, project administration and funding acquisition. G.J.M. and Y.J.P. were involved in the investigation and writing of the original draft. T.S. and Z.L.S. were involved in the methodology, validation, formal analysis and investigation. J.A.S. was involved in the investigation and writing of the original draft. A.T. was involved in the investigation, writing of the original draft and visualisation. V.W. was involved in the investigation and writing of the original draft. A.C.A.B. reviewed and edited the paper and was involved with project administration. M.N.D., J.E., D.H., S.I., B.A.M., G.P., D.Q. and W.R.M.R. reviewed and edited the paper. V.J.H. was involved with validation, the investigation and writing of the original draft. H.L. reviewed and edited the paper and was involved with project administration.

Corresponding author

Correspondence to E. Dartois.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dartois, E., Noble, J.A., Caselli, P. et al. Spectroscopic sizing of interstellar icy grains with JWST. Nat Astron 8, 359–367 (2024). https://doi.org/10.1038/s41550-023-02155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02155-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing