Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights into star formation and dispersal from the synchronization of stellar clocks

Abstract

Age is one of the most fundamental parameters of a star, yet it is one of the hardest to determine as it requires modelling various aspects of stellar formation and evolution. When we compare the ages derived from isochronal and dynamical traceback methods for six young stellar associations, we find a systematic discrepancy. Specifically, dynamical traceback ages are consistently younger by an average of 〈ΔAge〉 = 5.5 ± 1.1 Myr. We rule out measurement errors as the cause of the age mismatch and propose that ΔAge indicates the time a young star remains bound to its parental cloud before moving away from its siblings. In this framework, the dynamical traceback ‘clock’ starts when a stellar cluster or association begins to expand after expelling most of the gas, whereas the isochronal ‘clock’ starts earlier when most stars form. The difference between these two age-dating techniques is a powerful tool for constraining evolutionary models, as isochronal ages cannot be younger than dynamical traceback ages. Measuring the ΔAge accurately and understanding its variations across different environments will provide further information on the impact of local conditions and stellar feedback on the formation and dispersal of stellar clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Systematic offset between ages from evolutionary models and dynamical traceback ages.
Fig. 2: Diagram showing the different phases in the formation of stellar clusters and associations.
Fig. 3: ΔAge as a function of the number of association members.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in Table 1.

References

  1. Drązkowska, J. et al. Planet formation theory in the era of ALMA and Kepler: from pebbles to exoplanets. In Proc. Astronomical Society of the Pacific Conference Series, Vol. 534 (eds Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M.) 717 (ASP, 2023).

  2. Manara, C. F. et al. Demographics of young stars and their protoplanetary disks: lessons learned on disk evolution and its connection to planet formation. In Proc. Astronomical Society of the Pacific Conference Series, Vol. 534 (eds Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M.) 539 (ASP, 2023).

  3. Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011).

    Article  ADS  Google Scholar 

  4. Miret-Roig, N. The origin of free-floating planets. Astrophys. Space Sci. 368, 17 (2023).

    Article  ADS  Google Scholar 

  5. Zucker, C., Alves, J., Goodman, A., Meingast, S. & Galli, P. The solar neighborhood in the age of Gaia. In Proc. Astronomical Society of the Pacific Conference Series, Vol. 534 (eds Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M.) 43 (ASP, 2023).

  6. Mermilliod, J. C. Relative and absolute ages of open clusters. In Proc. Astronomical Society of the Pacific Conference Series, Vol. 198 (eds Pallavicini, R., Micela, G. & Sciortino, S.) 105 (ASP, 2000).

  7. Soderblom, D. R. The ages of stars. Annu. Rev. Astron. Astrophys. 48, 581–629 (2010).

    Article  ADS  Google Scholar 

  8. Soderblom, D. R., Hillenbrand, L. A., Jeffries, R. D., Mamajek, E. E. & Naylor, T. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 219–241 (Univ. Arizona Press, 2014).

  9. Barrado, D. Clusters: age scales for stellar physics. EAS Publ. Ser. 80-81, 115–175 (2016).

    Article  CAS  Google Scholar 

  10. Gaia Collaboration et al. Gaia Data Release 3: summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

  11. Bossini, D. et al. Age determination for 269 Gaia DR2 open clusters. Astron. Astrophys. 623, A108 (2019).

    Article  CAS  Google Scholar 

  12. Cantat-Gaudin, T. et al. Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 640, A1 (2020).

    Article  CAS  Google Scholar 

  13. Dias, W. S. et al. Updated parameters of 1743 open clusters based on Gaia DR2. Mon. Not. R. Astron. Soc. 504, 356–371 (2021).

    Article  ADS  CAS  Google Scholar 

  14. Li, L. & Shao, Z. MiMO: mixture model for open clusters in color–magnitude diagrams. Astrophys. J. 930, 44 (2022).

    Article  ADS  Google Scholar 

  15. Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages. Astron. Astrophys. 382, 563–572 (2002).

    Article  ADS  Google Scholar 

  16. Luhman, K. L. The formation and early evolution of low-mass stars and brown dwarfs. Annu. Rev. Astron. Astrophys. 50, 65–106 (2012).

    Article  ADS  CAS  Google Scholar 

  17. Allard, F. The BT-Settl model atmospheres for stars, brown dwarfs and planets. Proc. Int. Astron. Union 8, 271–272 (2013).

    Article  CAS  Google Scholar 

  18. Jeffries, R. D. et al. The Gaia-ESO survey: kinematic structure in the Gamma Velorum cluster. Astron. Astrophys. 563, A94 (2014).

    Article  Google Scholar 

  19. Jeffries, R. D., Jackson, R. J., Sun, Q. & Deliyannis, C. P. The effects of rotation on the lithium depletion of G- and K-dwarfs in Messier 35. Mon. Not. R. Astron. Soc. 500, 1158–1177 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Binks, A. S. et al. The Gaia-ESO survey: constraining evolutionary models and ages for young low mass stars with measurements of lithium depletion and rotation. Mon. Not. R. Astron. Soc. 513, 5727–5751 (2022).

    ADS  CAS  Google Scholar 

  21. Basri, G., Marcy, G. W. & Graham, J. R. Lithium in brown dwarf candidates: the mass and age of the faintest Pleiades stars. Astrophys. J. 458, 600 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Stauffer, J. R., Schultz, G. & Kirkpatrick, J. D. Keck spectra of Pleiades brown dwarf candidates and a precise determination of the lithium depletion edge in the Pleiades. Astrophys. J. Lett. 499, L199–L203 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Barrado y Navascués, D., Stauffer, J. R. & Patten, B. M. The lithium-depletion boundary and the age of the young open cluster IC 2391. Astrophys. J. Lett. 522, L53–L56 (1999).

    Article  ADS  Google Scholar 

  24. Manzi, S., Randich, S., de Wit, W. J. & Palla, F. Detection of the lithium depletion boundary in the young open cluster IC 4665. Astron. Astrophys. 479, 141–148 (2008).

    Article  ADS  CAS  Google Scholar 

  25. Binks, A. S. & Jeffries, R. D. A lithium depletion boundary age of 21 Myr for the Beta Pictoris moving group. Mon. Not. R. Astron. Soc. 438, L11–L15 (2014).

    Article  ADS  CAS  Google Scholar 

  26. Binks, A. S. et al. The Gaia-ESO survey: a lithium depletion boundary age for NGC 2232. Mon. Not. R. Astron. Soc. 505, 1280–1292 (2021).

    Article  ADS  CAS  Google Scholar 

  27. Galindo-Guil, F. J. et al. Lithium depletion boundary, stellar associations, and Gaia. Astron. Astrophys. 664, A70 (2022).

    Article  CAS  Google Scholar 

  28. Blaauw, A. The O associations in the solar neighborhood. Annu. Rev. Astron. Astrophys. 2, 213 (1964).

    Article  ADS  Google Scholar 

  29. Miret-Roig, N. et al. Dynamical traceback age of the β Pictoris moving group. Astron. Astrophys. 642, A179 (2020).

    Article  Google Scholar 

  30. Brown, A. G. A., Dekker, G. & de Zeeuw, P. T. Kinematic ages of OB associations. Mon. Not. R. Astron. Soc. 285, 479–492 (1997).

    Article  ADS  Google Scholar 

  31. Ortega, V. G., de la Reza, R., Jilinski, E. & Bazzanella, B. The origin of the β Pictoris moving group. Astrophys. J. Lett. 575, L75–L78 (2002).

    Article  ADS  Google Scholar 

  32. de la Reza, R., Jilinski, E. & Ortega, V. G. Dynamical evolution of the TW Hydrae association. Astron. J. 131, 2609–2614 (2006).

    Article  ADS  Google Scholar 

  33. Ducourant, C. et al. The TW Hydrae association: trigonometric parallaxes and kinematic analysis. Astron. Astrophys. 563, A121 (2014).

    Article  Google Scholar 

  34. Miret-Roig, N., Antoja, T., Romero-Gómez, M. & Figueras, F. Dynamical ages of the young local associations with Gaia. Astron. Astrophys. 615, A51 (2018).

    Article  ADS  Google Scholar 

  35. Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).

    Article  ADS  Google Scholar 

  36. Miret-Roig, N. et al. The star formation history of upper Scorpius and Ophiuchus. A 7D picture: positions, kinematics, and dynamical traceback ages. Astron. Astrophys. 667, A163 (2022).

    Article  CAS  Google Scholar 

  37. Squicciarini, V., Gratton, R., Bonavita, M. & Mesa, D. Unveiling the star formation history of the upper Scorpius association through its kinematics. Mon. Not. R. Astron. Soc. 507, 1381–1400 (2021).

    Article  ADS  Google Scholar 

  38. Kerr, R. et al. SPYGLASS. III. The Fornax–Horologium association and its traceback history within the Austral complex. Astrophys. J. 941, 143 (2022).

    Article  ADS  Google Scholar 

  39. Kerr, R. et al. SPYGLASS. II. The multigenerational and multiorigin star formation history of Cepheus far north. Astrophys. J. 941, 49 (2022).

    Article  ADS  Google Scholar 

  40. Galli, P. A. B., Miret-Roig, N., Bouy, H., Olivares, J. & Barrado, D. Dynamical age of the Tucana-Horologium young stellar association. Mon. Not. R. Astron. Soc. 520, 6245–6255 (2023).

    Article  ADS  CAS  Google Scholar 

  41. Couture, D., Gagné, J. & Doyon, R. Addressing systematics in the traceback age of the β Pictoris moving group. Astrophys. J. https://doi.org/10.3847/1538-4357/acb4eb (2023).

  42. Quintana, A. L., Wright, N. J. & Jeffries, R. D. Mapping the distribution of OB stars and associations in Auriga. Mon. Not. R. Astron. Soc. 522, 3124–3137 (2023).

    Article  ADS  Google Scholar 

  43. Stahler, S. W. The birthline for low-mass stars. Astrophys. J. 274, 822–829 (1983).

    Article  ADS  Google Scholar 

  44. Palla, F. & Stahler, S. W. Star formation in the Orion nebula cluster. Astrophys. J. 525, 772–783 (1999).

    Article  ADS  Google Scholar 

  45. Wuchterl, G. & Tscharnuter, W. M. From clouds to stars. Protostellar collapse and the evolution to the pre-main sequence I. Equations and evolution in the Hertzsprung–Russell diagram. Astron. Astrophys. 398, 1081–1090 (2003).

    Article  ADS  Google Scholar 

  46. Preibisch, T. The reliability of age measurements for young stellar objects from Hertzsprung–Russell or color–magnitude diagrams. Res. Astron. Astrophys. 12, 1–25 (2012).

    Article  ADS  Google Scholar 

  47. Kudryavtseva, N. et al. Instantaneous starburst of the massive clusters Westerlund 1 and NGC 3603 YC. Astrophys. J. Lett. 750, L44 (2012).

    Article  ADS  Google Scholar 

  48. Ratzenböck, S. et al. The star formation history of the Sco-Cen association: coherent star formation patterns in space and time. Astron. Astrophys. 678, A71 (2023).

  49. Krumholz, M. R., McKee, C. F. & Bland-Hawthorn, J. Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019).

    Article  ADS  Google Scholar 

  50. Kuhn, M. A., Hillenbrand, L. A., Sills, A., Feigelson, E. D. & Getman, K. V. Kinematics in young star clusters and associations with Gaia DR2. Astrophys. J. 870, 32 (2019).

    Article  ADS  CAS  Google Scholar 

  51. Kruijssen, J. M. D. et al. Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature 569, 519–522 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chevance, M. et al. The lifecycle of molecular clouds in nearby star-forming disc galaxies. Mon. Not. R. Astron. Soc. 493, 2872–2909 (2020).

    Article  ADS  Google Scholar 

  53. Demachi, F. et al. GMCs and their type classification in M74: toward understanding star formation and cloud evolution. Preprint at arXiv.org/abs/2305.19192 (2023).

  54. Dobbs, C. L., Bending, T. J. R., Pettitt, A. R., Buckner, A. S. M. & Bate, M. R. The formation of clusters and OB associations in different density spiral arm environments. Mon. Not. R. Astron. Soc. 517, 675–696 (2022).

    Article  ADS  Google Scholar 

  55. Guszejnov, D. et al. Effects of the environment and feedback physics on the initial mass function of stars in the STARFORGE simulations. Mon. Not. R. Astron. Soc. 515, 4929–4952 (2022).

    Article  ADS  Google Scholar 

  56. Jeffreson, S. M. R., Semenov, V. A. & Krumholz, M. R. Clouds of Theseus: long-lived molecular clouds are composed of short-lived H2 molecules. Preprint at arXiv.org/abs/2301.10251 (2023).

  57. Chevance, M. et al. Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. Mon. Not. R. Astron. Soc. 509, 272–288 (2022).

    Article  ADS  CAS  Google Scholar 

  58. Dinnbier, F. & Walch, S. How fast do young star clusters expel their natal gas? Estimating the upper limit of the gas expulsion time-scale. Mon. Not. R. Astron. Soc. 499, 748–767 (2020).

    Article  ADS  CAS  Google Scholar 

  59. Goodwin, S. P. & Bastian, N. Gas expulsion and the destruction of massive young clusters. Mon. Not. R. Astron. Soc. 373, 752–758 (2006).

    Article  ADS  Google Scholar 

  60. Krause, M. G. H., Charbonnel, C., Bastian, N. & Diehl, R. Gas expulsion in massive star clusters? Constraints from observations of young and gas-free objects. Astron. Astrophys. 587, A53 (2016).

    Article  ADS  Google Scholar 

  61. Dinnbier, F. & Kroupa, P. Tidal tails of open star clusters as probes of early gas expulsion. I. A semi-analytic model. Astron. Astrophys. 640, A84 (2020).

    Article  ADS  CAS  Google Scholar 

  62. Dinnbier, F. & Kroupa, P. Tidal tails of open star clusters as probes to early gas expulsion. II. Predictions for Gaia. Astron. Astrophys. 640, A85 (2020).

    Article  ADS  Google Scholar 

  63. Kerr, R. M. P., Rizzuto, A. C., Kraus, A. L. & Offner, S. S. R. Stars with photometrically young Gaia luminosities around the Solar System (SPYGLASS). I. Mapping young stellar structures and their star formation histories. Astrophys. J. 917, 23 (2021).

    Article  ADS  CAS  Google Scholar 

  64. Prisinzano, L. et al. Low-mass young stars in the Milky Way unveiled by DBSCAN and Gaia EDR3: mapping the star forming regions within 1.5 kpc. Astron. Astrophys. 664, A175 (2022).

    Article  CAS  Google Scholar 

  65. Dalton, G. et al. Final design and progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope. In Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9908 (eds Evans, C. J., Simard, L. & Takami, H.) 99081G (SPIE, 2016).

  66. de Jong, R. S. et al. 4MOST: project overview and information for the first call for proposals. Messenger 175, 3–11 (2019).

    ADS  Google Scholar 

  67. Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).

    Article  ADS  Google Scholar 

  68. Preibisch, T., Brown, A. G. A., Bridges, T., Guenther, E. & Zinnecker, H. Exploring the full stellar population of the upper Scorpius OB association. Astron. J. 124, 404–416 (2002).

    Article  ADS  Google Scholar 

  69. David, T. J. et al. Age determination in upper Scorpius with eclipsing binaries. Astrophys. J. 872, 161 (2019).

    Article  ADS  CAS  Google Scholar 

  70. Pecaut, M. J., Mamajek, E. E. & Bubar, E. J. A revised age for upper Scorpius and the star formation history among the F-type members of the Scorpius-Centaurus OB association. Astrophys. J. 746, 154 (2012).

    Article  ADS  Google Scholar 

  71. Rizzuto, A. C., Ireland, M. J., Dupuy, T. J. & Kraus, A. L. Dynamical masses of young stars. I. Discordant model ages of upper Scorpius. Astrophys. J. 817, 164 (2016).

    Article  ADS  Google Scholar 

  72. Feiden, G. A. Magnetic inhibition of convection and the fundamental properties of low-mass stars. III. A consistent 10 Myr age for the upper Scorpius OB association. Astron. Astrophys. 593, A99 (2016).

    Article  ADS  Google Scholar 

  73. Ratzenböck, s. et al. Significance mode analysis (SigMA) for hierarchical structures. An application to the Sco-Cen OB association. Astron. Astrophys. 677, A59 (2023).

    Article  Google Scholar 

  74. Briceño-Morales, G. & Chanamé, J. Substructure, supernovae, and a time-resolved star formation history for upper Scorpius. Mon. Not. R. Astron. Soc. 522, 1288–1309 (2023).

    Article  ADS  Google Scholar 

  75. Barrado y Navascués, D., Stauffer, J. R., Song, I. & Caillault, J.-P. The age of β Pictoris. Astrophys. J. Lett. 520, L123–L126 (1999).

    Article  ADS  Google Scholar 

  76. Malo, L. et al. BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups—isochronal age determination using magnetic evolutionary models. Astrophys. J. 792, 37 (2014).

    Article  ADS  Google Scholar 

  77. Mamajek, E. E. & Bell, C. P. M. On the age of the β Pictoris moving group. Mon. Not. R. Astron. Soc. 445, 2169–2180 (2014).

    Article  ADS  Google Scholar 

  78. Bell, C. P. M., Mamajek, E. E. & Naylor, T. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood. Mon. Not. R. Astron. Soc. 454, 593–614 (2015).

    Article  ADS  Google Scholar 

  79. Ujjwal, K., Kartha, S. S., Mathew, B., Manoj, P. & Narang, M. Analysis of membership probability in nearby young moving groups with Gaia DR2. Astron. J. 159, 166 (2020).

    Article  ADS  Google Scholar 

  80. Crundall, T. D. et al. Chronostar: a novel Bayesian method for kinematic age determination – I. Derivation and application to the β Pictoris moving group. Mon. Not. R. Astron. Soc. 489, 3625–3642 (2019).

    ADS  Google Scholar 

  81. Mentuch, E., Brandeker, A., van Kerkwijk, M. H., Jayawardhana, R. & Hauschildt, P. H. Lithium depletion of nearby young stellar associations. Astrophys. J. 689, 1127–1140 (2008).

    Article  ADS  CAS  Google Scholar 

  82. Messina, S. et al. The rotation-lithium depletion correlation in the β Pictoris association and the LDB age determination. Astron. Astrophys. 596, A29 (2016).

    Article  Google Scholar 

  83. Torres, C. A. O., da Silva, L., Quast, G. R., de la Reza, R. & Jilinski, E. A new association of post-T Tauri stars near the Sun. Astron. J. 120, 1410–1425 (2000).

    Article  ADS  Google Scholar 

  84. Kraus, A. L., Shkolnik, E. L., Allers, K. N. & Liu, M. C. A stellar census of the Tucana-Horologium moving group. Astron. J. 147, 146 (2014).

    Article  ADS  Google Scholar 

  85. Bovy, J. galpy: A Python library for Galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).

    Article  ADS  Google Scholar 

  86. Jackson, R. J. & Jeffries, R. D. On the relationship between the size and surface coverage of starspots on magnetically active low-mass stars. Mon. Not. R. Astron. Soc. 431, 1883–1890 (2013).

    Article  ADS  CAS  Google Scholar 

  87. Somers, G. & Pinsonneault, M. H. A tale of two anomalies: depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence. Astrophys. J. 790, 72 (2014).

    Article  ADS  Google Scholar 

  88. Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

D.B. is supported by Spanish MCIN/AEI/10.13039/501100011033 Grant nos. PID2019-107061GB-C61 and MDM-2017-0737. S.R. acknowledges funding from the Austrian Research Promotion Agency (https://www.ffg.at/) under project no. FO999892674.

Author information

Authors and Affiliations

Authors

Contributions

N.M.-R. led the analysis and wrote the manuscript. S.R. computed the isochrone-fitting ages reported in this study and did the Bayesian modelling in Fig. 3. All authors participated in the scientific discussion.

Corresponding author

Correspondence to Núria Miret-Roig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Mariangela Bonavita, Alexander Binks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miret-Roig, N., Alves, J., Barrado, D. et al. Insights into star formation and dispersal from the synchronization of stellar clocks. Nat Astron 8, 216–222 (2024). https://doi.org/10.1038/s41550-023-02132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02132-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing