Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An abrupt change in the stellar spin-down law at the fully convective boundary

Abstract

Unlike partially convective stars such as the Sun, fully convective stars do not possess a radiative core. Whether a star needs this core to generate a solar-like magnetic dynamo is still unclear. Recent studies suggest fully and partially convective stars exhibit very similar period–activity relationships, hinting that dynamos generated by stars with and without radiative cores hold similar properties. Here, using kinematic ages, we discover an abrupt change in the stellar spin-down law across the fully convective boundary. We found that fully convective stars exhibit a higher angular momentum loss rate, corresponding to a torque that is ~1.51 times higher for a given angular velocity than partially convective stars around the fully convective boundary. Because stellar-wind torques depend primarily on large-scale magnetic fields and mass-loss rates, both of which are suggested to be similar for partially and fully convective stars, the observed abrupt change in spin-down law suggests that the dynamos of partially and fully convective stars may be fundamentally different.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin-down of stars and stellar models near the fully convective boundary.
Fig. 2: Spin-down sequences for fully and partially convective stars in narrow temperature bins.
Fig. 3: Period–mass diagrams plotted with Markov chain Monte Carlo best-fit models.

Similar content being viewed by others

Data availability

The data used are available in Supplementary Data 1.

References

  1. Chabrier, G. & Baraffe, I. Structure and evolution of low-mass stars. Astron. Astrophys. 327, 1039–1053 (1997).

    ADS  CAS  Google Scholar 

  2. Pallavicini, R. et al. Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. Astrophys. J. 248, 279–290 (1981).

    Article  ADS  Google Scholar 

  3. Lehtinen, J. J., Spada, F., Käpylä, M. J., Olspert, N. & Käpylä, P. J. Common dynamo scaling in slowly rotating young and evolved stars. Nat. Astron. 4, 658–662 (2020).

    Article  ADS  Google Scholar 

  4. Stelzer, B., Damasso, M., Scholz, A. & Matt, S. P. A path towards understanding the rotation-activity relation of M dwarfs with K2 mission, X-ray and UV data. Mon. Not. R. Astron. Soc. 463, 1844–1864 (2016).

    Article  ADS  CAS  Google Scholar 

  5. Newton, E. R. et al. The Hα emission of nearby M dwarfs and its relation to stellar rotation. Astrophys. J. 834, 85 (2017).

    Article  ADS  Google Scholar 

  6. Wright, N. J. et al. The stellar rotation-activity relationship in fully convective M dwarfs. Mon. Not. R. Astron. Soc. 479, 2351–2360 (2018).

    Article  ADS  CAS  Google Scholar 

  7. Babcock, H. W. The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961).

    Article  ADS  Google Scholar 

  8. Leighton, R. B. A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1–26 (1969).

    Article  ADS  Google Scholar 

  9. Cameron, R. H. & Schüssler, M. An update of Leighton’s solar dynamo model. Astron. Astrophys. 599, A52 (2017).

    Article  ADS  Google Scholar 

  10. Warnecke, J. et al. Investigating global convective dynamos with mean-field models: full spectrum of turbulent effects required. Astrophys. J. Lett. 919, L13 (2021).

    Article  ADS  Google Scholar 

  11. Matt, S. P. et al. The mass-dependence of angular momentum evolution in Sun-like stars. Astrophys. J. Lett. 799, L23 (2015).

    Article  ADS  Google Scholar 

  12. Saders, J. L. et al. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars. Nature 529, 181–184 (2016).

    Article  ADS  PubMed  Google Scholar 

  13. Garraffo, C. et al. The revolution revolution: magnetic morphology driven spin-down. Astrophys. J. 862, 90 (2018).

    Article  ADS  Google Scholar 

  14. Spada, F. & Lanzafame, A. C. Competing effect of wind braking and interior coupling in the rotational evolution of solar-like stars. Astron. Astrophys. 636, A76 (2020).

    Article  ADS  Google Scholar 

  15. Irwin, J. et al. On the angular momentum evolution of fully convective stars: rotation periods for field M-dwarfs from the MEarth transit survey. Astrophys. J. 727, 56 (2011).

    Article  ADS  Google Scholar 

  16. Berta, Z. K. et al. Transit detection in the MEarth survey of nearby M dwarfs: bridging the clean-first, search-later divide. Astrophys. J. 144, 145 (2012).

    ADS  Google Scholar 

  17. Dungee, R. et al. A 4 Gyr M-dwarf gyrochrone from CFHT/MegaPrime monitoring of the open cluster M67. Astrophys. J. 938, 118 (2022).

    Article  ADS  Google Scholar 

  18. Lu, Y. et al. Bridging the gap—the disappearance of the intermediate period gap for fully convective stars, uncovered by new ZTF rotation periods. Astrophys. J. 164, 251 (2022).

    Google Scholar 

  19. Angus, R. et al. Exploring the evolution of stellar rotation using galactic kinematics. Astrophys. J. 160, 90 (2020).

    Google Scholar 

  20. Lu, Y. et al. Gyro-kinematic ages for around 30,000 Kepler stars. Astrophys. J. 161, 189 (2021).

    CAS  Google Scholar 

  21. Andrae, R., Rix, H.-W. & Chandra, V. Robust data-driven metallicities for 175 million stars from Gaia XP spectra. Astrophys. J. Suppl. Ser. 267, 8 (2023).

    Article  ADS  Google Scholar 

  22. Siess, L., Dufour, E. & Forestini, M. An internet server for pre-main sequence tracks of low- and intermediate-mass stars. Astron. Astrophys. 358, 593–599 (2000).

    ADS  CAS  Google Scholar 

  23. Amard, L. et al. First grids of low-mass stellar models and isochrones with self-consistent treatment of rotation. From 0.2 to 1.5 M at seven metallicities from PMS to TAMS. Astron. Astrophys. 631, A77 (2019).

    Article  CAS  Google Scholar 

  24. Saders, J. L. & Pinsonneault, M. H. An 3He-driven instability near the fully convective boundary. Astrophys. J. 751, 98 (2012).

    Article  ADS  Google Scholar 

  25. Jao, W.-C., Henry, T. J., Gies, D. R. & Hambly, N. C. A gap in the lower main sequence revealed by Gaia data release 2. Astrophys. J. Lett. 861, L11 (2018).

    Article  ADS  Google Scholar 

  26. Gaia Collaboration et al. Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  27. Feiden, G. A., Skidmore, K. & Jao, W.-C. Gaia gaps and the physics of low-mass stars. I. The fully convective boundary. Astrophys. J. 907, 53 (2021).

    Article  ADS  CAS  Google Scholar 

  28. Baraffe, I. & Chabrier, G. A closer look at the transition between fully convective and partly radiative low-mass stars. Astron. Astrophys. 619, A177 (2018).

    Article  ADS  CAS  Google Scholar 

  29. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  30. Curtis, J. L. et al. When do stalled stars resume spinning down? Advancing gyrochronology with Ruprecht 147. Astrophys. J. 904, 140 (2020).

    Article  ADS  CAS  Google Scholar 

  31. Mestel, L. Angular momentum loss during pre-main sequence contraction. in Cool Stars, Stellar Systems, and the Sun. Lecture Notes in Physics (eds Baliunas, S. L. & Hartmann, L.) Vol. 193, 49 (Springer, Berlin, Heidelberg, 1984).

  32. Finley, A. J. & Matt, S. P. The effect of combined magnetic geometries on thermally driven winds. II. Dipolar, quadrupolar, and octupolar topologies. Astrophys. J. 854, 78 (2018).

    Article  ADS  Google Scholar 

  33. Wood, B. E. et al. New observational constraints on the winds of M dwarf stars. Astrophys. J. 915, 37 (2021).

    Article  ADS  CAS  Google Scholar 

  34. See, V., Lehmann, L., Matt, S. P. & Finley, A. J. How much do underestimated field strengths from Zeeman–Doppler imaging affect spin-down torque estimates? Astrophys. J. 894, 69 (2020).

    Article  ADS  Google Scholar 

  35. Kochukhov, O. & Shulyak, D. Magnetic field of the eclipsing M-dwarf binary YY Gem. Astrophys. J. 873, 69 (2019).

    Article  ADS  CAS  Google Scholar 

  36. Green, G. M. dustmaps: a Python interface for maps of interstellar dust. J. Open Source Softw. 3, 695 (2018).

    Article  ADS  Google Scholar 

  37. Green, G. M. et al. Galactic reddening in 3D from stellar photometry—an improved map. Mon. Not. R. Astron. Soc. 478, 651–666 (2018).

    Article  ADS  CAS  Google Scholar 

  38. Yu, J. & Liu, C. The age-velocity dispersion relation of the Galactic discs from LAMOST-Gaia data. Mon. Not. R. Astron. Soc. 475, 1093–1103 (2018).

    Article  ADS  CAS  Google Scholar 

  39. Lu, Y., Angus, R., Foreman-Mackey, D. & Hattori, S. In this day and age: an empirical gyrochronology relation for partially and fully convective single field stars. Preprint at https://arxiv.org/abs/2310.14990 (2023).

  40. Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article  ADS  Google Scholar 

  42. Collaboration, G. Gaia data release 3: summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

  43. Collaboration, A. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

  44. Price-Whelan, A. M. et al. The Astropy project: building an open-science project and status of the v2.0 core package. Astrophys. J. 156, 123 (2018).

    Google Scholar 

  45. Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).

    Article  ADS  CAS  Google Scholar 

  46. Krishna Swamy, K. S. Profiles of strong lines in K-dwarfs. Astrophys. J. 145, 174–194 (1966).

    Article  ADS  Google Scholar 

  47. Pordes, R. et al. The open Science grid. J. Phys. Conf. Ser. 78, 012057 (2007).

    Article  Google Scholar 

  48. Sfiligoi, I. et al. The pilot way to grid resources using glideinWMS. In 2009 WRI World Congress on Computer Science and Information Engineering Vol. 2, 428–432 (IEEE, 2009).

  49. Ochsenbein, F., Bauer, P. & Marcout, J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. 143, 23–32 (2000).

    Article  ADS  Google Scholar 

  50. Wenger, M. et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Suppl. 143, 9–22 (2000).

    Article  ADS  Google Scholar 

  51. Skumanich, A. Time scales for CA II emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565–567 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Y.L. acknowledges support from the the European Space Agency (ESA) through the Science Faculty of the European Space Research and Technology Centre (ESTEC). V.S. acknowledges support from the ESA as an ESA Research Fellow. R.A. acknowledges support from NSF AAG grant no. 2108251. S.P.M. acknowledges support as a visiting scholar from the Center for Computational Astrophysics at the Flatiron Institute, which is supported by the Simons Foundation. This work has made use of data from the ESA mission Gaia, processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. This research also made use of public auxiliary data provided by ESA/Gaia/DPAC/CU5 and prepared by Carine Babusiaux. This research was done using services provided by the OSG Consortium47,48, which is supported by the National Science Foundation award nos. 2030508 and 1836650. This research has also made use of NASA’s Astrophysics Data System and the VizieR49 and SIMBAD50 databases, operated at CDS, Strasbourg, France.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. developed the initial idea and prepared the observational data. L.A. prepared the stellar evolution model. Y.L., V.S., L.A. and R.A. conducted the data analysis. Y.L., V.S., L.A., R.A. and S.P.M. interpreted the broader context and wrote the manuscript.

Corresponding author

Correspondence to Yuxi (Lucy) Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Maarit Korpi-Lagg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Supplementary Data 1

The raw data used to generate the figures in the main text. The second row describes each column, and the units are in brackets

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y.(., See, V., Amard, L. et al. An abrupt change in the stellar spin-down law at the fully convective boundary. Nat Astron 8, 223–229 (2024). https://doi.org/10.1038/s41550-023-02126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02126-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing