Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The 21-cm forest as a simultaneous probe of dark matter and cosmic heating history

Abstract

The absorption features in spectra of high-redshift background radio sources, caused by hyperfine structure lines of hydrogen atoms in the intervening structures, are known collectively as the 21-cm forest. They provide a unique probe of small-scale structures during the epoch of reionization, and can be used to constrain the properties of the dark matter (DM) thought to govern small-scale structure formation. However, the signals are easily suppressed by heating processes that are degenerate with a warm DM model. Here we propose a probe of both the DM particle mass and the heating history of the Universe, using the one-dimensional power spectrum of the 21-cm forest. The one-dimensional power spectrum measurement not only breaks the DM model degeneracy but also increases the sensitivity, making the probe actually feasible. Making 21-cm forest observations with the upcoming Square Kilometre Array has the potential to simultaneously determine both the DM particle mass and the heating level in the early Universe, shedding light on the nature of DM and the first galaxies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic spectra for an unheated IGM.
Fig. 2: Synthetic spectra for the CDM model.
Fig. 3: The expected 1D power spectrum of the 21-cm forest with S150 = 10 mJy.
Fig. 4: The expected 1D power spectrum of the 21-cm forest for different heating histories and different DM models.
Fig. 5: The amplitude and slope of the 1D power spectrum of the 21-cm forest.
Fig. 6: Constraints on TK and mWDM with the 1D power spectrum of the 21-cm forest with S150 = 10 mJy.

Similar content being viewed by others

Data availability

The main data that support the results in this work are provided with this paper, and are also available at https://doi.org/10.57760/sciencedb.08093. Further datasets are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code 21cmFAST used for large-scale simulation is publicly available at https://github.com/andreimesinger/21cmFAST, the codes for simulating small-scale structures and 21-cm forest signals are available from the corresponding authors upon reasonable request, and the GADGET code is available at https://wwwmpa.mpa-garching.mpg.de/gadget.

References

  1. Carilli, C. L., Gnedin, N. Y. & Owen, F. H i 21 centimeter absorption beyond the epoch of reionization. Astrophys. J. 577, 22–30 (2002).

    ADS  Google Scholar 

  2. Furlanetto, S. R. & Loeb, A. The 21 centimeter forest: radio absorption spectra as probes of minihalos before reionization. Astrophys. J. 579, 1 (2002).

    ADS  Google Scholar 

  3. Furlanetto, S. R. The 21-cm forest. Mon. Not. R. Astron. Soc. 370, 1867–1875 (2006).

    ADS  Google Scholar 

  4. Xu, Y., Chen, X., Fan, Z., Trac, H. & Cen, R. The 21 cm forest as a probe of the reionization and the temperature of the intergalactic medium. Astrophys. J. 704, 1396–1404 (2009).

    ADS  Google Scholar 

  5. Xu, Y., Ferrara, A., Kitaura, F. S. & Chen, X. Searching for the earliest galaxies in the 21 cm forest. Sci. China Phys. Mech. Astron. 53, 1124–1129 (2010).

    ADS  Google Scholar 

  6. Xu, Y., Ferrara, A. & Chen, X. The earliest galaxies seen in 21 cm line absorption. Mon. Not. R. Astron. Soc. 410, 2025–2042 (2011).

    ADS  Google Scholar 

  7. Ciardi, B. et al. Prospects for detecting the 21 cm forest from the diffuse intergalactic medium with LOFAR. Mon. Not. R. Astron. Soc. 428, 1755–1765 (2013).

    ADS  Google Scholar 

  8. Avila-Reese, V., Colín, P., Valenzuela, O., D’Onghia, E. & Firmani, C. Formation and structure of halos in a warm dark matter cosmology. Astrophys. J. 559, 516–530 (2001).

    ADS  Google Scholar 

  9. Smith, R. E. & Markovic, K. Testing the warm dark matter paradigm with large-scale structures. Phys. Rev. D 84, 063507 (2011).

    ADS  Google Scholar 

  10. Schneider, A., Smith, R. E. & Reed, D. Halo mass function and the free streaming scale. Mon. Not. R. Astron. Soc. 433, 1573–1587 (2013).

    ADS  Google Scholar 

  11. Viel, M., Becker, G. D., Bolton, J. S. & Haehnelt, M. G. Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-α forest data. Phys. Rev. D 88, 043502 (2013).

    ADS  Google Scholar 

  12. Baur, J., Palanque-Delabrouille, N., Yèche, C., Magneville, C. & Viel, M. Lyman-alpha forests cool warm dark matter. J. Cosmol. Astropart. Phys. 2016, 012 (2016).

    Google Scholar 

  13. Iršič, V. et al. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D 96, 023522 (2017).

    ADS  MathSciNet  Google Scholar 

  14. Shimabukuro, H., Ichiki, K., Inoue, S. & Yokoyama, S. Probing small-scale cosmological fluctuations with the 21 cm forest: effects of neutrino mass, running spectral index, and warm dark matter. Phys. Rev. D 90, 083003 (2014).

    ADS  Google Scholar 

  15. Shimabukuro, H., Ichiki, K. & Kadota, K. Constraining the nature of ultra light dark matter particles with the 21 cm forest. Phys. Rev. D 101, 043516 (2020).

    ADS  Google Scholar 

  16. Mack, K. J. & Wyithe, J. S. B. Detecting the redshifted 21 cm forest during reionization. Mon. Not. R. Astron. Soc. 425, 2988–3001 (2012).

    ADS  Google Scholar 

  17. Ewall-Wice, A., Dillon, J. S., Mesinger, A. & Hewitt, J. Detecting the 21 cm forest in the 21 cm power spectrum. Mon. Not. R. Astron. Soc. 441, 2476–2496 (2014).

    ADS  Google Scholar 

  18. Thyagarajan, N. Statistical detection of IGM structures during cosmic reionization using absorption of the redshifted 21 cm line by H i against compact background radio sources. Astrophys. J. 899, 16 (2020).

    ADS  Google Scholar 

  19. Mesinger, A., Furlanetto, S. & Cen, R. 21cmFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. Mon. Not. R. Astron. Soc. 411, 955–972 (2011).

    ADS  Google Scholar 

  20. Cooray, A. & Sheth, R. Halo models of large scale structure. Phys. Rep. 372, 1–129 (2002).

    ADS  MATH  Google Scholar 

  21. Zentner, A. R. The excursion set theory of halo mass functions, halo clustering, and halo growth. Int. J. Mod. Phys. D 16, 763–815 (2007).

    ADS  MATH  Google Scholar 

  22. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

    ADS  Google Scholar 

  23. Barkana, R. A model for infall around virialized haloes. Mon. Not. R. Astron. Soc. 347, 59–66 (2004).

    ADS  Google Scholar 

  24. Menci, N. et al. Observing the very low surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on dark matter scenarios. Astron. Astrophys. 604, A59 (2017).

    Google Scholar 

  25. Garzilli, A., Ruchayskiy, O., Magalich, A. & Boyarsky, A. How warm is too warm? Towards robust Lyman-α forest bounds on warm dark matter. Mon. Not. R. Astron. Soc. 502, 2356–2363 (2021).

    ADS  Google Scholar 

  26. Palanque-Delabrouille, N. et al. Hints, neutrino bounds, and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data. J. Cosmol. Astropart. Phys. 2020, 038 (2020).

    Google Scholar 

  27. Nadler, E. O. et al. Constraints on dark matter properties from observations of Milky Way satellite galaxies. Phys. Rev. Lett. 126, 091101 (2021).

    ADS  Google Scholar 

  28. Wouthuysen, S. A. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31–32 (1952).

    Google Scholar 

  29. Field, G. B. The spin temperature of intergalactic neutral hydrogen. Astrophys. J. 129, 536–550 (1959).

    ADS  Google Scholar 

  30. Furlanetto, S. R. The global 21-centimeter background from high redshifts. Mon. Not. R. Astron. Soc. 371, 867–878 (2006).

    ADS  Google Scholar 

  31. de Lera Acedo, E., Pienaar, H. & Fagnoni, N. Antenna design for the SKA1-LOW and HERA super radio telescopes. Preprint at https://arxiv.org/abs/2003.10733 (2020).

  32. SKA Telescope specifications. SKAO https://www.skao.int/en/science-users/118/ska-telescope-specifications (2022).

  33. Sitwell, M., Mesinger, A., Ma, Y.-Z. & Sigurdson, K. The imprint of warm dark matter on the cosmological 21-cm signal. Mon. Not. R. Astron. Soc. 438, 2664–2671 (2014).

    ADS  Google Scholar 

  34. Muñoz, J. B., Dvorkin, C. & Cyr-Racine, F.-Y. Probing the small-scale matter power spectrum with large-scale 21-cm data. Phys. Rev. D 101, 063526 (2020).

    ADS  Google Scholar 

  35. Hibbard, J. J. et al. Constraining warm dark matter and population III stars with the global 21 cm signal. Astrophys. J. 929, 151 (2022).

    ADS  Google Scholar 

  36. Ciardi, B. & Ferrara, A. The first cosmic structures and their effects. Space Sci. Rev. 116, 625–705 (2005).

    ADS  Google Scholar 

  37. Shao, Y. et al. Observations by GMRT at 323 MHz of radio-loud quasars at z > 5. Astron. Astrophys. 641, A85 (2020).

    ADS  Google Scholar 

  38. Liu, Y. et al. Constraining the quasar radio-loud fraction at z ~ 6 with deep radio observations. Astrophys. J. 908, 124 (2021).

    ADS  Google Scholar 

  39. Shao, Y. et al. The radio spectral turnover of radio-loud quasars at z > 5. Astron. Astrophys. 659, A159 (2022).

    Google Scholar 

  40. Bañados, E. et al. The discovery of a highly accreting, radio-loud quasar at z = 6.82. Astrophys. J. 909, 80 (2021).

    ADS  Google Scholar 

  41. Ighina, L. et al. Radio detection of VIK J2318−3113, the most distant radio-loud quasar (z = 6.44). Astron. Astrophys. 647, L11 (2021).

    ADS  Google Scholar 

  42. Gloudemans, A. J. et al. Discovery of 24 radio-bright quasars at 4.9 ≤ z ≤ 6.6 using low-frequency radio observations. Astron. Atrophys. 668, A27 (2022).

    Google Scholar 

  43. Gloudemans, A. J. et al. Low frequency radio properties of the z > 5 quasar population. Astron. Astrophys. 656, A137 (2021).

    Google Scholar 

  44. Haiman, Z., Quataert, E. & Bower, G. C. Modeling the counts of faint radio-loud quasars: constraints on the supermassive black hole population and predictions for high redshift. Astrophys. J. 612, 698–705 (2004).

    ADS  Google Scholar 

  45. Salvaterra, R. et al. GRB090423 at a redshift of z ≈ 8.1. Nature 461, 1258–1260 (2009).

    ADS  Google Scholar 

  46. Cucchiara, A. et al. A photometric redshift of z ~9.4 for GRB 090429B. Astrophys. J. 736, 7 (2011).

    ADS  Google Scholar 

  47. Kinugawa, T., Harikane, Y. & Asano, K. Long gamma-ray burst rate at very high redshift. Astrophys. J. 878, 128 (2019).

    ADS  Google Scholar 

  48. Enzi, W. et al. Joint constraints on thermal relic dark matter from strong gravitational lensing, the Ly α forest, and Milky Way satellites. Mon. Not. R. Astron. Soc. 506, 5848–5862 (2021).

    ADS  Google Scholar 

  49. Abdurashidova, Z. et al. HERA Phase I limits on the cosmic 21 cm signal: constraints on astrophysics and cosmology during the epoch of reionization. Astrophys. J. 924, 51 (2022).

    ADS  Google Scholar 

  50. Field, G. B. An attempt to observe neutral hydrogen between the galaxies. Astrophys. J. 129, 525 (1959).

    ADS  Google Scholar 

  51. Madau, P., Meiksin, A. & Rees, M. J. 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429–444 (1997).

    ADS  Google Scholar 

  52. Planck Collaboration Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Google Scholar 

  53. Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974).

    ADS  Google Scholar 

  54. Bode, P., Ostriker, J. P. & Turok, N. Haloformation in warm dark matter models. Astrophys. J. 556, 93–107 (2001).

    ADS  Google Scholar 

  55. Viel, M., Lesgourgues, J., Haehnelt, M. G., Matarrese, S. & Riotto, A. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-α forest. Phys. Rev. D 71, 063534 (2005).

    ADS  Google Scholar 

  56. Makino, N., Sasaki, S. & Suto, Y. X-ray gas density profile of clusters of galaxies from the universal dark matter halo. Astrophys. J. 497, 555–558 (1998).

    ADS  Google Scholar 

  57. Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: analytic and numerical comparisons. Astrophys. J. 495, 80–99 (1998).

    ADS  Google Scholar 

  58. Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–98 (2002).

    ADS  Google Scholar 

  59. Keshet, U., Waxman, E., Loeb, A., Springel, V. & Hernquist, L. Gamma rays from intergalactic shocks. Astrophys. J. 585, 128–150 (2003).

    ADS  Google Scholar 

  60. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).

    ADS  Google Scholar 

  61. Xu, Y., Yue, B. & Chen, X. Maximum absorption of the global 21 cm spectrum in the standard cosmological model. Astrophys. J. 923, 98 (2021).

    ADS  Google Scholar 

  62. Yue, B. & Chen, X. Reionization in the warm dark matter model. Astrophys. J. 747, 127 (2012).

    ADS  Google Scholar 

  63. Dayal, P., Choudhury, T. R., Bromm, V. & Pacucci, F. Reionization and galaxy formation in warm dark matter cosmologies. Astrophys. J. 836, 16 (2017).

    ADS  Google Scholar 

  64. Cen, R. A hydrodynamic approach to cosmology: methodology. Astrophys. J. Suppl. Ser. 78, 341–364 (1992).

    ADS  Google Scholar 

  65. Hui, L. & Gnedin, N. Y. Equation of state of the photoionized intergalactic medium. Mon. Not. R. Astron. Soc. 292, 27–42 (1997).

    ADS  Google Scholar 

  66. Hui, L. & Haiman, Z. The thermal memory of reionization history. Astrophys. J. 596, 9–18 (2003).

    ADS  Google Scholar 

  67. Valdés, M. & Ferrara, A. The energy cascade from warm dark matter decays. Mon. Not. R. Astron. Soc. 387, L8–L12 (2008).

    ADS  Google Scholar 

  68. Salvadori, S. & Ferrara, A. Ultra faint dwarfs: probing early cosmic star formation. Mon. Not. R. Astron. Soc. 395, L6–L10 (2009).

    ADS  Google Scholar 

  69. Thompson, A. R., Moran, J. M. & Swenson, G. W. Jr Interferometry and Synthesis in Radio Astronomy 3rd edn (Springer, 2017).

Download references

Acknowledgements

We thank Y. Li, P.-J. Wu, J.-Z. Qi and B. Yue for helpful discussions. This work was supported by National Key R&D Program of China (grant no. 2022YFF0504300), the National Natural Science Foundation of China (grant nos. 11973047, 11975072, 11835009, 11988101 and 12022306) and the National SKA Program of China (grant nos. 2020SKA0110401, 2020SKA0110100, 2022SKA0110200 and 2022SKA0110203). Y.X. and X.C. also acknowledge support by the CAS grant (grant no. ZDKYYQ20200008). Y.W. acknowledges support by the CAS Interdisciplinary Innovation Team (grant no. JCTD-2019-05). R.L. acknowledges support by the CAS grant (grant no. YSBR-062) and the grant from K.C.Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. performed most of the computation and analysis, and wrote part of the paper. Y.X. led the study, contributed to the simulations and wrote the majority of the paper. Y.W. and W.Y. contributed to the computation of the 1D power spectrum. Y.X. and R.L. proposed the study. X.Z. and X.C. contributed to the collaboration organization, the Fisher forecasts and the writing of the paper, and supervised the study. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Yidong Xu, Xin Zhang or Xuelei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The overdensity (left panel), optical depth (middle panel) and brightness temperature (right panel) for a line of sight of 2 comoving Mpc in the CDM model at z = 9.

The green, yellow and red lines correspond to local overdensities of δ0 = 0, 1 and 2, respectively. The flux density of the background source in the right panel is assumed to be S150 = 10 mJy.

Source data

Extended Data Fig. 2 1-D power spectrum of a synthetic 21-cm forest spectrum in the CDM model, for a line of sight penetrating through an unheated IGM (fX = 0) with different local overdensities at z = 9.

The green, yellow and red curves correspond to δ0 = 0, 1 and 2, respectively. The flux density of the background source is assumed to be S150 = 10 mJy.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Xu, Y., Wang, Y. et al. The 21-cm forest as a simultaneous probe of dark matter and cosmic heating history. Nat Astron 7, 1116–1126 (2023). https://doi.org/10.1038/s41550-023-02024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02024-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing