Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

i 21-centimetre emission from an ensemble of galaxies at an average redshift of one

An Author Correction to this article was published on 11 July 2022

This article has been updated

Abstract

Baryonic processes in galaxy evolution include the infall of gas onto galaxies to form neutral atomic hydrogen, which is then converted to the molecular state (H2), and, finally, the conversion of H2 to stars. Understanding galaxy evolution thus requires an understanding of the evolution of stars and of neutral atomic and molecular hydrogen. For the stars, the cosmic star-formation rate density is known to peak at redshifts from 1 to 3, and to decline by an order of magnitude over approximately the subsequent 10 billion years1; the causes of this decline are not known. For the gas, the weakness of the hyperfine transition of H i at 21-centimetre wavelength—the main tracer of the H i content of galaxies—means that it has not hitherto been possible to measure the atomic gas mass of galaxies at redshifts higher than about 0.4; this is a critical gap in our understanding of galaxy evolution. Here we report a measurement of the average H i mass of star-forming galaxies at a redshift of about one, obtained by stacking2 their individual H i 21-centimetre emission signals. We obtain an average H i mass similar to the average stellar mass of the sample. We also estimate the average star-formation rate of the same galaxies from the 1.4-gigahertz radio continuum, and find that the H i mass can fuel the observed star-formation rates for only 1 to 2 billion years in the absence of fresh gas infall. This suggests that gas accretion onto galaxies at redshifts of less than one may have been insufficient to sustain high star-formation rates in star-forming galaxies. This is likely to be the cause of the decline in the cosmic star-formation rate density at redshifts below one.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The final stacked H i 21-cm emission image.
Fig. 2: The final stacked H i 21-cm spectrum.
Fig. 3: Redshift and temporal evolution of the cosmic H i mass density in galaxies, ΩHi.

Similar content being viewed by others

Data availability

The raw data reported in this paper are available through the GMRT archive (https://naps.ncra.tifr.res.in/goa) with project code 35_087. The analysed data files are large and are available from the corresponding author on reasonable request. The data displayed in Fig. 1 are publicly available at https://github.com/chowdhuryaditya/DEEP2_nature as a FITS file. Source data are provided with this paper.

Code availability

The custom code used to calibrate the GMRT data is publicly available at https://github.com/chowdhuryaditya/calR.

Change history

References

  1. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article  ADS  Google Scholar 

  2. Chengalur, J. N., Braun, R. & Wieringa, M. HI in Abell 3128. Astron. Astrophys. 372, 768–774 (2001).

    Article  ADS  CAS  Google Scholar 

  3. Swarup, G. et al. The Giant Metre-Wave Radio Telescope. Curr. Sci. 60, 95–105 (1991).

    ADS  Google Scholar 

  4. Gupta, Y. et al. The upgraded GMRT: opening new windows on the radio Universe. Curr. Sci. 113, 707–714 (2017).

    Article  ADS  Google Scholar 

  5. Newman, J. A. et al. The DEEP2 galaxy redshift survey: design, observations, data reduction, and redshifts. Astrophys. J. Suppl. Ser. 208, 5 (2013).

    Article  ADS  Google Scholar 

  6. Fernández, X. et al. Highest redshift image of neutral hydrogen in emission: a CHILES detection of a starbursting galaxy at z = 0.376. Astrophys. J. 824, L1 (2016).

    Article  ADS  Google Scholar 

  7. Lah, P. et al. The H i content of star-forming galaxies at z = 0.24. Mon. Not. R. Astron. Soc. 376, 1357–1366 (2007).

    Article  ADS  CAS  Google Scholar 

  8. Rhee, J. et al. Neutral atomic hydrogen (H i) gas evolution in field galaxies at z ~ 0.1 and ~0.2. Mon. Not. R. Astron. Soc. 435, 2693–2706 (2013).

    Article  ADS  CAS  Google Scholar 

  9. Kanekar, N., Sethi, S. & Dwarakanath, K. S. The gas mass of star-forming galaxies at z ≈ 1.3. Astrophys. J. 818, L28 (2016).

    Article  ADS  Google Scholar 

  10. Bera, A., Kanekar, N., Chengalur, J. N. & Bagla, J. S. Atomic hydrogen in star-forming galaxies at intermediate redshifts. Astrophys. J. 882, L7 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Weiner, B. J. et al. Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z = 1.4. Astrophys. J. 692, 187–211 (2009).

    Article  ADS  CAS  Google Scholar 

  12. Catinella, B. et al. xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe. Mon. Not. R. Astron. Soc. 476, 875–895 (2018).

    Article  ADS  CAS  Google Scholar 

  13. Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004).

    Article  ADS  CAS  Google Scholar 

  14. Noeske, K. G. et al. Star formation in AEGIS field galaxies since z = 1.1: the dominance of gradually declining star formation, and the main sequence of star-forming galaxies. Astrophys. J. 660, L43–L46 (2007).

    Article  ADS  CAS  Google Scholar 

  15. Rodighiero, G. et al. The lesser role of starbursts in star formation at z = 2. Astrophys. J. 739, L40 (2011).

    Article  ADS  Google Scholar 

  16. Yun, M. S., Reddy, N. A. & Condon, J. J. Radio properties of infrared-selected galaxies in the IRAS 2 Jy sample. Astrophys. J. 554, 803–822 (2001).

    Article  ADS  Google Scholar 

  17. White, R. L., Helfand, D. J., Becker, R. H., Glikman, E. & de Vries, W. Signals from the noise: image stacking for quasars in the FIRST survey. Astrophys. J. 654, 99–114 (2007).

    Article  ADS  CAS  Google Scholar 

  18. Bera, A., Kanekar, N., Weiner, B. J., Sethi, S. & Dwarakanath, K. S. Probing star formation in galaxies at z ≈ 1 via a Giant Metrewave Radio Telescope stacking analysis. Astrophys. J. 865, 39 (2018).

    Article  ADS  Google Scholar 

  19. Tacconi, L. J. et al. PHIBSS: molecular gas content and scaling relations in z ~ 1–3 massive, main-sequence star-forming galaxies. Astrophys. J. 768, 74 (2013).

    Article  ADS  Google Scholar 

  20. Saintonge, A. et al. xCOLD GASS: the complete IRAM 30 m legacy survey of molecular gas for galaxy evolution studies. Astrophys. J. Suppl. Ser. 233, 22 (2017).

    Article  ADS  Google Scholar 

  21. Jones, M. G., Haynes, M. P., Giovanelli, R. & Moorman, C. The ALFALFA H i mass function: a dichotomy in the low-mass slope and a locally suppressed ‘knee’ mass. Mon. Not. R. Astron. Soc. 477, 2–17 (2018).

    Article  ADS  CAS  Google Scholar 

  22. Wolfe, A. M., Gawiser, E. & Prochaska, J. X. Damped Lyα systems. Annu. Rev. Astron. Astrophys. 43, 861–918 (2005).

    Article  ADS  CAS  Google Scholar 

  23. Noterdaeme, P. et al. Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III data release 9. Astron. Astrophys. 547, L1 (2012).

    Article  ADS  Google Scholar 

  24. Chang, T. C., Pen, U.-L. & Bandura, K. An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8. Nature 466, 463–465 (2010).

    Article  ADS  CAS  Google Scholar 

  25. Rao, S. M., Turnshek, D. A., Sardane, G. M. & Monier, E. M. The statistical properties of neutral gas at z < 1.65 from UV measurements of damped Lyman alpha systems. Mon. Not. R. Astron. Soc. 471, 3428–3442 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Willmer, C. N. A. et al. The Deep Evolutionary Exploratory Probe 2 galaxy redshift survey: the galaxy luminosity function to z ~ 1. Astrophys. J. 647, 853–873 (2006).

    Article  ADS  Google Scholar 

  27. Crighton, N. H. M. et al. The neutral hydrogen cosmological mass density at z = 5. Mon. Not. R. Astron. Soc. 452, 217–234 (2015).

    Article  ADS  CAS  Google Scholar 

  28. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A. et al.) 127–130 (ASP, 2007).

  29. Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, A95 (2012).

    Article  Google Scholar 

  30. Cornwell, T. J., Golap, K. & Bhatnagar, S. The noncoplanar baselines effect in radio interferometry: the W-projection algorithm. IEEE J. Sel. Top. Signal Process. 2, 647–657 (2008).

    Article  ADS  Google Scholar 

  31. Rau, U. & Cornwell, T. J. A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. Astron. Astrophys. 532, A71 (2011).

    Article  ADS  Google Scholar 

  32. Maddox, N., Hess, K. M., Blyth, S. L. & Jarvis, M. J. Comparison of H i and optical redshifts of galaxies — the impact of redshift uncertainties on spectral line stacking. Mon. Not. R. Astron. Soc. 433, 2613–2625 (2013).

    Article  ADS  CAS  Google Scholar 

  33. Elson, E. C., Baker, A. J. & Blyth, S. L. On the uncertainties of results derived from H i spectral line stacking experiments. Mon. Not. R. Astron. Soc. 486, 4894–4903 (2019).

    Article  ADS  CAS  Google Scholar 

  34. Condon, J. J., Cotton, W. D. & Broderick, J. J. Radio sources and star formation in the local Universe. Astron. J. 124, 675–689 (2002).

    Article  ADS  Google Scholar 

  35. Wang, J. et al. New lessons from the H i size–mass relation of galaxies. Mon. Not. R. Astron. Soc. 460, 2143–2151 (2016).

    Article  ADS  CAS  Google Scholar 

  36. Elson, E. C., Blyth, S. L. & Baker, A. J. Synthetic data products for future H i galaxy surveys: a tool for characterizing source confusion in spectral line stacking experiments. Mon. Not. R. Astron. Soc. 460, 4366–4381 (2016).

    Article  ADS  CAS  Google Scholar 

  37. Obreschkow, D., Klöckner, H. R., Heywood, I., Levrier, F. & Rawlings, S. A virtual sky with extragalactic H I and CO lines for the Square Kilometre Array and the Atacama Large Millimeter/Submillimeter Array. Astrophys. J. 703, 1890–1903 (2009).

    Article  ADS  CAS  Google Scholar 

  38. Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).

    Article  ADS  Google Scholar 

  39. Hu, W. et al. An accurate low-redshift measurement of the cosmic neutral hydrogen density. Mon. Not. R. Astron. Soc. 489, 1619–1632 (2019).

    Article  ADS  CAS  Google Scholar 

  40. Dénes, H., Kilborn, V. A. & Koribalski, B. S. New H i scaling relations to probe the H i content of galaxies via global H i-deficiency maps. Mon. Not. R. Astron. Soc. 444, 667–681 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the GMRT who have made these observations possible. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. N.K. acknowledges support from the Department of Science and Technology via a Swarnajayanti Fellowship (DST/SJF/PSA-01/2012-13). A.C., N.K. and J.N.C. also acknowledge support from the Department of Atomic Energy, under project 12-R&D-TFR-5.02-0700.

Author information

Authors and Affiliations

Authors

Contributions

N.K. and A.C. wrote the GMRT proposal. A.C. carried out the analysis of the GMRT data, with N.K. and J.N.C. contributing to the data analysis. A.C., N.K. and J.N.C. contributed to the interpretation of the results. A.C. and N.K. wrote the manuscript. J.N.C., S.S. and K.S.D. contributed to the writing and the editing of the proposal and the manuscript.

Corresponding author

Correspondence to Nissim Kanekar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The fraction of data excised across the observing band.

This includes all data lost due to time-variable effects, including RFI, malfunctioning antennas and power failures. The plotted fraction of lost data was obtained by averaging over the approximately 67 h of on-source time on the five DEEP2 sub-fields.

Extended Data Fig. 2 Distribution of the spectral r.m.s. noise for the 7,653 target galaxies.

Shown is the r.m.s. noise per 30 km s−1 channel on the H i 21-cm spectra of the 7,653 galaxies of the final sample. Left panel, results for the galaxies in fields 31–33 and 42, each of which have about 900 min of on-source time. Right panel, results for field 41, where the on-source time was about 450 min. The red curve in each panel shows the predicted r.m.s. noise for the uGMRT array, after accounting for (1) the on-source time, (2) the fraction of data lost due to RFI and other effects, and (3) the smoothing of the H i 21-cm cubes to the same spatial resolution at all redshifts, that is, to coarser angular resolutions at higher frequencies.

Extended Data Fig. 3 Dependence of the stacked r.m.s. noise on the number of galaxies, N.

The figure shows the r.m.s. noise (in units of H i mass sensitivity) on the stacked H i 21-cm spectrum as a function of the number of galaxies whose H i 21-cm spectra have been stacked together, assuming a velocity width of 270 km s−1. Each red dot shows the r.m.s. noise from the spectrum of N galaxies (with N = 100, 200, 400, 800, 1,600, 3,200 and 6,400), randomly drawn from the full sample of 7,653 galaxies. The magenta star shows the r.m.s. noise on the final stacked spectrum of 7,653 galaxies. The dashed blue line indicates the relation r.m.s. noise N−0.5 (normalized to pass through the point with N = 100), as expected if the 7,653 H i 21-cm spectra contain no correlations. The relation r.m.s. noise N−0.5 is an excellent match to the data points, implying that the H i 21-cm spectra show no evidence for the presence of systematic correlated non-Gaussian effects.

Extended Data Fig. 4 The stacked 1.4-GHz continuum emission from our galaxies and offset positions.

a, b, The average rest-frame 1.4-GHz luminosity density of the 7,653 main-sequence DEEP2 galaxies, obtained by median-stacking the 1.4-GHz radio continuum emission at the location of each individual galaxy (a), and at a location 100″ offset from each galaxy (b). Dec., declination; RA, right ascension. A clear (29σ significance) detection is visible at the location of the DEEP2 galaxies, while the stack at offset positions shows no evidence for either emission or any systematic patterns. The circle in the bottom left corner of each panel represents the final 5.5″ beam of the continuum images, after convolution. The patterns visible in a around the central bright source arise from the effective point spread function of the stacked image.

Extended Data Fig. 5 The relation between H i mass and absolute blue magnitude.

The figure shows the relation between average H i mass and absolute B-band magnitude for galaxies with MB ≤ −20 at z = 1.06. The red points show the average H i mass, obtained by stacking the H i 21-cm emission, of blue galaxies in two MB bins (separated at the median, MB = −21.042) at z = 1.06. The solid blue curve shows the relation between MHi and MB in the local Universe40. Our measurements at z = 1.06 are consistent with the MBMHi relationship at z ≈ 0.

Extended Data Table 1 Summary of the uGMRT observations

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, A., Kanekar, N., Chengalur, J.N. et al.i 21-centimetre emission from an ensemble of galaxies at an average redshift of one. Nature 586, 369–372 (2020). https://doi.org/10.1038/s41586-020-2794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2794-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing