Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constraining black hole–galaxy scaling relations and radiative efficiency from galaxy clustering

Abstract

The masses of supermassive black holes are observed to increase with either the total mass or the mean (random) velocity of the stars in their host galaxies. The origin of these correlations remains elusive due to observational systematics and biases that severely limit our knowledge of the local demography of supermassive black holes. Here, we show that the large-scale spatial distribution of local active galactic nuclei (AGN) can constrain the shape and normalization of the black hole–stellar mass relation, thus bypassing resolution-related observational biases. In turn, our results can set more stringent constraints on the AGN radiative efficiency, ε. For currently accepted values of the AGN obscured fractions and bolometric corrections, our estimated local supermassive black hole mass density favours mean ε values of ~10–20%, suggesting that the vast majority of supermassive black holes are spinning moderately to rapidly. With large-scale AGN surveys coming online, our methodology will enable even tighter constraints on the fundamental parameters that regulate the growth of supermassive black holes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of local scaling relations between black hole mass and host (total) stellar mass.
Fig. 2: Predicted bias as a function of black hole mass, b(MBH).
Fig. 3: Comparing local and accreted mass functions.
Fig. 4: Comparing local and accreted integrated mass densities.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data for Fig. 3 are provided with the paper.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Rees, M. J. Black hole models for active galactic nuclei. Ann. Rev. Astron. Astrophys. 22, 471–506 (1984).

    ADS  Google Scholar 

  2. Bardeen, J. M., Press, W. H. & Teukolsky, S. A. Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972).

    ADS  Google Scholar 

  3. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982).

    ADS  Google Scholar 

  4. Salucci, P., Szuszkiewicz, E., Monaco, P. & Danese, L. Mass function of dormant black holes and the evolution of active galactic nuclei. Mon. Not. R. Astron. Soc. 307, 637–644 (1999).

    ADS  Google Scholar 

  5. Marconi, A. et al. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 351, 169–185 (2004).

    ADS  Google Scholar 

  6. Shankar, F., Weinberg, D. H. & Miralda-Escudé, J. Accretion-driven evolution of black holes: Eddington ratios, duty cycles and active galaxy fractions. Mon. Not. R. Astron. Soc. 428, 421–446 (2013).

    ADS  Google Scholar 

  7. Aversa, R., Lapi, A., de Zotti, G., Shankar, F. & Danese, L. Black hole and galaxy coevolution from continuity equation and abundance matching. Astrophys. J. 810, 74 (2015).

    ADS  Google Scholar 

  8. Shankar, F. et al. Selection bias in dynamically measured supermassive black hole samples: its consequences and the quest for the most fundamental relation. Mon. Not. R. Astron. Soc. 460, 3119–3142 (2016).

    ADS  Google Scholar 

  9. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Ann. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Google Scholar 

  10. Davis, B. L., Graham, A. W. & Cameron, E. Black hole mass scaling relations for spiral galaxies. II. M BHM *,tot and M BHM *,disk. Astrophys. J. 869, 113 (2018).

    ADS  Google Scholar 

  11. Busch, G. et al. A low-luminosity type-1 QSO sample. I. Overluminous host spheroidals or undermassive black holes. Astron. Astrophys. 561, A140 (2014).

    Google Scholar 

  12. Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).

    ADS  Google Scholar 

  13. Shankar, F. et al. Black hole scaling relations of active and quiescent galaxies: addressing selection effects and constraining virial factors. Mon. Not. R. Astron. Soc. 485, 1278–1292 (2019).

    ADS  Google Scholar 

  14. Bernardi, M., Sheth, R. K., Tundo, E. & Hyde, J. B. Selection bias in the M σ and M L correlations and its consequences. Astrophys. J. 660, 267–275 (2007).

    ADS  Google Scholar 

  15. Morabito, L. K. & Dai, X. A Bayesian Monte Carlo analysis of the Mσ relation. Astrophys. J. 757, 172 (2012).

    ADS  Google Scholar 

  16. Cooray, A. & Sheth, R. Halo models of large scale structure. Phys. Rep. 372, 1–129 (2002).

    ADS  MATH  Google Scholar 

  17. Shankar, F. et al. Revisiting the bulge–halo conspiracy. I. Dependence on galaxy properties and halo mass. Astrophys. J. 840, 34 (2017).

    ADS  Google Scholar 

  18. Grylls, P. J., Shankar, F., Zanisi, L. & Bernardi, M. A statistical semi-empirical model: satellite galaxies in groups and clusters. Mon. Not. R. Astron. Soc. 483, 2506–2523 (2019).

    ADS  Google Scholar 

  19. Shankar, F., Weinberg, D. H. & Shen, Y. Constraints on black hole duty cycles and the black hole–halo relation from SDSS quasar clustering. Mon. Not. R. Astron. Soc. 406, 1959–1966 (2010).

    ADS  Google Scholar 

  20. Krumpe, M. et al. The spatial clustering of ROSAT All-Sky Survey active galactic nuclei. IV. More massive black holes reside in more massive dark matter halos. Astrophys. J. 815, 21 (2015).

    ADS  Google Scholar 

  21. Davé, R. et al. Simba: cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 486, 2827–2849 (2019).

    ADS  Google Scholar 

  22. Savorgnan, G. A. D., Graham, A. W., Marconi, A. & Sani, E. Supermassive black holes and their host spheroids. II. The red and blue sequence in the M BHM *,sph diagram. Astrophys. J. 817, 21 (2016).

    ADS  Google Scholar 

  23. Sahu, N., Graham, A. W. & Davis, B. L. Black hole mass scaling relations for early-type galaxies. I. M BHM * ,sph and M BHM *,gal. Astrophys. J. 876, 155 (2019).

    ADS  Google Scholar 

  24. Baron, D. & Ménard, B. Black hole mass estimation for active galactic nuclei from a new angle. Mon. Not. R. Astron. Soc. 487, 3404–3418 (2019).

    ADS  Google Scholar 

  25. Shankar, F., Bernardi, M. & Sheth, R. K. Selection bias in dynamically measured supermassive black hole samples: dynamical masses and dependence on Sérsic index. Mon. Not. R. Astron. Soc. 466, 4029–4039 (2017).

    ADS  Google Scholar 

  26. Sarria, J. E. et al. The M BHM star relation of obscured AGNs at high redshift. Astron. Astrophys. 522, L3 (2010).

    ADS  Google Scholar 

  27. Falomo, R., Bettoni, D., Karhunen, K., Kotilainen, J. K. & Uslenghi, M. Low-redshift quasars in the Sloan Digital Sky Survey Stripe 82. The host galaxies. Mon. Not. R. Astron. Soc. 440, 476–493 (2014).

    ADS  Google Scholar 

  28. Tinker, J. et al. Toward a halo mass function for precision cosmology: the limits of universality. Astrophys. J. 688, 709–728 (2008).

    ADS  Google Scholar 

  29. Powell, M. C. et al. The Swift/BAT AGN spectroscopic survey. IX. The clustering environments of an unbiased sample of local AGNs. Astrophys. J. 858, 110 (2018).

    ADS  Google Scholar 

  30. Krumpe, M., Miyaji, T., Coil, A. L. & Aceves, H. Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies. Mon. Not. R. Astron. Soc. 474, 1773–1786 (2018).

    ADS  Google Scholar 

  31. Sheth, R. K. & Tormen, G. Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 308, 119–126 (1999).

    ADS  Google Scholar 

  32. Ueda, Y., Akiyama, M., Hasinger, G., Miyaji, T. & Watson, M. G. Toward the standard population synthesis model of the X-ray background: evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations. Astrophys. J. 786, 104 (2014).

    ADS  Google Scholar 

  33. Yang, G. et al. Linking black hole growth with host galaxies: the accretion–stellar mass relation and its cosmic evolution. Mon. Not. R. Astron. Soc. 475, 1887–1911 (2018).

    ADS  Google Scholar 

  34. Harrison, F. A. et al. The NuSTAR extragalactic surveys: the number counts of active galactic nuclei and the resolved fraction of the cosmic X-ray background. Astrophys. J. 831, 185 (2016).

    ADS  Google Scholar 

  35. Shankar, F., Cavaliere, A., Cirasuolo, M. & Maraschi, L. Optical–radio mapping: the kinetic efficiency of radio-loud AGNs. Astrophys. J. 676, 131–136 (2008).

    ADS  Google Scholar 

  36. Reynolds, C. S. Observing black holes spin. Nat. Astron. 3, 41–47 (2019).

    ADS  Google Scholar 

  37. Shankar, F. et al. The optical–UV emissivity of quasars: dependence on black hole mass and radio loudness. Astrophys. J. Lett. 818, L1 (2016).

    ADS  Google Scholar 

  38. Zhang, X. & Lu, Y. On constraining the growth history of massive black holes via their distribution on the spin–mass plane. Astrophys. J. 873, 101 (2019).

    ADS  Google Scholar 

  39. Elvis, M., Risaliti, G. & Zamorani, G. Most supermassive black holes must be rapidly rotating. Astrophys. J. Lett. 565, L75–L77 (2002).

    ADS  Google Scholar 

  40. Yu, Q. & Lu, Y. Toward precise constraints on the growth of massive black holes. Astrophys. J. 689, 732–754 (2008).

    ADS  Google Scholar 

  41. Merloni, A. et al. eROSITA science book: mapping the structure of the energetic universe. Preprint at https://arxiv.org/abs/1209.3114 (2012).

  42. Bell, E. F., McIntosh, D. H., Katz, N. & Weinberg, M. D. The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. Astrophys. J. Suppl. 149, 289–312 (2003).

    ADS  Google Scholar 

  43. Bernardi, M. et al. The high-mass end of the stellar mass function: dependence on stellar population models and agreement between fits to the light profile. Mon. Not. R. Astron. Soc. 467, 2217–2233 (2017).

    ADS  Google Scholar 

  44. Sesana, A., Shankar, F., Bernardi, M. & Sheth, R. K. Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays. Mon. Not. R. Astron. Soc. 463, L6–L11 (2016).

    ADS  Google Scholar 

  45. Shankar, F. et al. Revisiting the bulge–halo conspiracy. II. Towards explaining its puzzling dependence on redshift. Mon. Not. R. Astron. Soc. 475, 2878–2890 (2018).

    ADS  Google Scholar 

  46. Jiang, F. & van den Bosch, F. C. Statistics of dark matter substructure. I. Model and universal fitting functions. Mon. Not. R. Astron. Soc. 458, 2848–2869 (2016).

    ADS  Google Scholar 

  47. Giocoli, C., Tormen, G. & van den Bosch, F. C. The population of dark matter subhaloes: mass functions and average mass-loss rates. Mon. Not. R. Astron. Soc. 386, 2135–2144 (2008).

    ADS  Google Scholar 

  48. Bernardi, M. et al. The massive end of the luminosity and stellar mass functions: dependence on the fit to the light profile. Mon. Not. R. Astron. Soc. 436, 697–704 (2013).

    ADS  Google Scholar 

  49. Bernardi, M. et al. The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution. Mon. Not. R. Astron. Soc. 455, 4122–4135 (2016).

    ADS  Google Scholar 

  50. Tinker, J. L. et al. The correlation between halo mass and stellar mass for the most massive galaxies in the Universe. Astrophys. J. 839, 121 (2017).

    ADS  Google Scholar 

  51. Kravtsov, A. V., Vikhlinin, A. A. & Meshcheryakov, A. V. Stellar mass–halo mass relation and star formation efficiency in high-mass halos. Astron. Lett. 44, 8–34 (2018).

    ADS  Google Scholar 

  52. Behroozi, P., Wechsler, R., Hearin, A. & Conroy, C. UNIVERSEMACHINE: the correlation between galaxy growth and dark matter halo assembly from z = 0−10. Mon. Not. R. Astron. Soc. 488, 3143–3194 (2019).

    ADS  Google Scholar 

  53. Moster, B. P., Naab, T. & White, S. D. M. EMERGE—an empirical model for the formation of galaxies since z ~ 10. Mon. Not. R. Astron. Soc. 477, 1822–1852 (2018).

    ADS  Google Scholar 

  54. Huertas-Company, M., Aguerri, J. A. L., Bernardi, M., Mei, S. & Sánchez Almeida, J. Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification. Astron. Astrophys. 525, A157 (2011).

    ADS  Google Scholar 

  55. Small, T. A. & Blandford, R. D. Quasar evolution and the growth of black holes. Mon. Not. R. Astron. Soc. 259, 725–737 (1992).

    ADS  Google Scholar 

  56. Yu, Q. & Tremaine, S. Observational constraints on growth of massive black holes. Mon. Not. R. Astron. Soc. 335, 965–976 (2002).

    ADS  Google Scholar 

  57. Shankar, F., Salucci, P., Granato, G. L., De Zotti, G. & Danese, L. Supermassive black hole demography: the match between the local and accreted mass functions. Mon. Not. R. Astron. Soc. 354, 1020–1030 (2004).

    ADS  Google Scholar 

  58. Cao, X. Cosmological evolution of massive black holes: effects of Eddington ratio distribution and quasar lifetime. Astrophys. J. 725, 388–393 (2010).

    ADS  Google Scholar 

  59. Yu, Q. & Lu, Y. Constraints on QSO models from a relation between the QSO luminosity function and the local black hole mass function. Astrophys. J. 602, 603–624 (2004).

    ADS  Google Scholar 

  60. Shankar, F., Weinberg, D. H. & Miralda-Escudé, J. Self-consistent models of the AGN and black hole populations: duty cycles, accretion rates, and the mean radiative efficiency. Astrophys. J. 690, 20–41 (2009).

    ADS  Google Scholar 

  61. Goulding, A. D., Alexander, D. M., Lehmer, B. D. & Mullaney, J. R. Towards a complete census of active galactic nuclei in nearby galaxies: the incidence of growing black holes. Mon. Not. R. Astron. Soc. 406, 597–611 (2010).

    ADS  Google Scholar 

  62. Shankar, F. Black hole demography: from scaling relations to models. Class. Quantum Grav. 30, 244001 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  63. Ghisellini, G., Haardt, F., Della Ceca, R., Volonteri, M. & Sbarrato, T. The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift. Mon. Not. R. Astron. Soc. 432, 2818–2823 (2013).

    ADS  Google Scholar 

  64. Zubovas, K. AGN must be very efficient at powering outflows. Mon. Not. R. Astron. Soc. 479, 3189–3196 (2018).

    ADS  Google Scholar 

  65. Starikova, S. et al. Constraining halo occupation properties of X-ray active galactic nuclei using clustering of Chandra sources in the Boötes survey region. Astrophys. J. 741, 15 (2011).

    ADS  Google Scholar 

  66. Shen, Y. et al. Cross-correlation of SDSS DR7 quasars and DR10 BOSS galaxies: the weak luminosity dependence of quasar clustering at z ~ 0.5. Astrophys. J. 778, 98 (2013).

    ADS  Google Scholar 

  67. Leauthaud, A. et al. The dark matter haloes of moderate luminosity X-ray AGN as determined from weak gravitational lensing and host stellar masses. Mon. Not. R. Astron. Soc. 446, 1874–1888 (2015).

    ADS  Google Scholar 

  68. Rodríguez-Torres, S. A. et al. Clustering of quasars in the first year of the SDSS-IV eBOSS survey: interpretation and halo occupation distribution. Mon. Not. R. Astron. Soc. 468, 728–740 (2017).

    ADS  Google Scholar 

  69. Man, Z.-y. et al. The dependence of AGN activity on environment in SDSS. Mon. Not. R. Astron. Soc. 488, 89–98 (2019).

    ADS  Google Scholar 

  70. Tinker, J. L., Weinberg, D. H., Zheng, Z. & Zehavi, I. On the mass-to-light ratio of large-scale structure. Astrophys. J. 631, 41–58 (2005).

    ADS  Google Scholar 

  71. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991).

    ADS  Google Scholar 

  72. Smith, R. E. et al. Stable clustering, the halo model and non-linear cosmological power spectra. Mon. Not. R. Astron. Soc. 341, 1311–1332 (2003).

    ADS  Google Scholar 

  73. Gould, A. Chi^2 and linear fits. Preprint at https://arxiv.org/abs/astro-ph/0310577 (2003).

  74. van Uitert, E., Cacciato, M., Hoekstra, H. & Herbonnet, R. Evolution of the luminosity-to-halo mass relation of LRGs from a combined analysis of SDSS-DR10+RCS2. Astron. Astrophys. 579, A26 (2015).

    Google Scholar 

  75. Tinker, J. L. et al. The large-scale bias of dark matter halos: numerical calibration and model tests. Astrophys. J. 724, 878–886 (2010).

    ADS  Google Scholar 

  76. Klypin, A., Yepes, G., Gottlöber, S., Prada, F. & Heß, S. MultiDark simulations: the story of dark matter halo concentrations and density profiles. Mon. Not. R. Astron. Soc. 457, 4340–4359 (2016).

    ADS  Google Scholar 

  77. Schulze, A. et al. The cosmic growth of the active black hole population at 1 < z < 2 in zCOSMOS, VVDS and SDSS. Mon. Not. R. Astron. Soc. 447, 2085–2111 (2015).

    ADS  Google Scholar 

  78. DiPompeo, M. A., Runnoe, J. C., Hickox, R. C., Myers, A. D. & Geach, J. E. The impact of the dusty torus on obscured quasar halo mass measurements. Mon. Not. R. Astron. Soc. 460, 175–186 (2016).

    ADS  Google Scholar 

  79. Jiang, N. et al. Differences in halo-scale environments between type 1 and type 2 AGNs at low redshift. Astrophys. J. 832, 111 (2016).

    ADS  Google Scholar 

  80. Lusso, E. et al. Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey. Mon. Not. R. Astron. Soc. 425, 623–640 (2012).

    ADS  Google Scholar 

  81. Hopkins, P. F., Richards, G. T. & Hernquist, L. An observational determination of the bolometric quasar luminosity function. Astrophys. J. 654, 731–753 (2007).

    ADS  Google Scholar 

  82. Zhang, X. & Lu, Y. On the mean radiative efficiency of accreting massive black holes in AGNs and QSOs. Sci. China Phys. Mech. Astron. 60, 109511 (2017).

    ADS  Google Scholar 

  83. Zhang, X., Lu, Y. & Yu, Q. The cosmic evolution of massive black holes and galaxy spheroids: global constraints at redshift z 1.2. Astrophys. J. 761, 5 (2012).

    ADS  Google Scholar 

  84. Vasudevan, R. V. & Fabian, A. C. Piecing together the X-ray background: bolometric corrections for active galactic nuclei. Mon. Not. R. Astron. Soc. 381, 1235–1251 (2007).

    ADS  Google Scholar 

  85. Shankar, F., Crocce, M., Miralda-Escudé, J., Fosalba, P. & Weinberg, D. H. On the radiative efficiencies, Eddington ratios, and duty cycles of luminous high-redshift quasars. Astrophys. J. 718, 231–250 (2010).

    ADS  Google Scholar 

  86. Vasudevan, R. V. et al. A selection effect boosting the contribution from rapidly spinning black holes to the cosmic X-ray background. Mon. Not. R. Astron. Soc. 458, 2012–2023 (2016).

    ADS  Google Scholar 

  87. Georgantopoulos, I. & Akylas, A. NuSTAR observations of heavily obscured Swift/BAT AGNs: constraints on the Compton-thick AGNs fraction. Astron. Astrophys. 621, A28 (2019).

    ADS  Google Scholar 

  88. Ananna, T. T. et al. The accretion history of AGNs. I. Supermassive black hole population synthesis model. Astrophys. J. 871, 240 (2019).

    ADS  Google Scholar 

  89. Kulier, A., Ostriker, J. P., Natarajan, P., Lackner, C. N. & Cen, R. Understanding black hole mass assembly via accretion and mergers at late times in cosmological simulations. Astrophys. J. 799, 178 (2015).

    ADS  Google Scholar 

  90. Ghez, A. M. et al. Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008).

    ADS  Google Scholar 

  91. Posti, L. & Helmi, A. Mass and shape of the Milky Way’s dark matter halo with globular clusters from Gaia and Hubble. Astron. Astrophys. 621, A56 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

F.S. thanks D. Weinberg, D. Baron, P. Behroozi, G. Calderone, B. Davis, F. Fiore, P. Gandhi, S. Hoenig, C. Knigge, C. Li, J. Miralda-Escudé, B. Moster, M. Powell, R. Vasudevan, C. Villforth and G. Yang for discussions and input, and acknowledges partial support from a Leverhulme Trust Research Fellowship and the European Union’s Horizon 2020 programme under the AHEAD project (grant agreement no. 654215). V.A. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 749348. M.B. acknowledges partial support from NSF grant AST-1816330. A.L. is supported by PRIN MIUR 2017 prot. 20173ML3WW_002 ‘Opening the ALMA window on the cosmic evolution of gas, stars and supermassive black holes’. M.K. acknowledges support from DLR grant 50OR1904. L.Z. and P.J.G. acknowledge funding from the Science and Technology Facilities Council (STFC).

Author information

Authors and Affiliations

Authors

Contributions

F.S. performed the full set up of the AGN mocks, analysis of the results and writing up of the manuscript. V.A. independently checked all of the results on AGN clustering and contributed to text revisions and to the referee reports. M.B. was one of the core authors in the Shankar et al.8 paper on the intrinsic black hole scaling relations and contributed to revision of the manuscript. C.M. devised accurate determinations of the correlation functions in the MultiDark simulation. A.L. calculated the accreted black hole mass functions following the models presented in Aversa et al.7. N.M. contributed to the AGN accretion models. P.J.G. and L.Z. contributed to the galaxy mocks, independently tested some of the key results and provided comments. J.M. performed preliminary large-scale bias estimates of AGN at different luminosities in low-redshift galaxies. M.K. made available a number of datasets on galaxy and AGN clustering inclusive of full covariance matrices. R.D.B. performed independent calculations of some of the AGN mocks. F.R. contributed to the characterization of the scaling relations in optically selected type I and type II AGN and to revision of the paper. F.L.F. provided key insights into the use of different AGN bolometric corrections. R.K.S. was one of the core authors in the Shankar et al.8 paper on the intrinsic black hole scaling relations and provided support on the theoretical side and revision of the paper.

Corresponding author

Correspondence to Francesco Shankar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Ryan Hickox and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Predicted local black hole mass functions of elliptical galaxies.

Same format as Figure 2 but only for elliptical, bulge-dominated galaxies. Panels a and b show the comparison between, respectively, the observed and intrinsic Mbh-Mstar and Mbh-σ relations of early-type galaxies, as labelled.

Extended Data Fig. 2 Comparing host halo auto-correlation functions.

Comparison between the linear matter correlation function multiplied by the square of the halo bias from Tinker et al. (2005, dotted line) and Tinker et al. (2010, solid line), and the autocorrelation function in the MultiDark simulation of all central and satellite haloes with virial mass at infall in the range 13.3<log Mvir/Msun<13.7. For this comparison we adopt the same cosmological parameters as in the MultiDark simulation.

Extended Data Fig. 3 Direct comparison with the cross-correlation function of active galaxies.

Comparison between the DR4 (panels a and b) and DR7 (panels c and d) projected AGN-galaxy cross-correlation function derived by Krumpe et al. (2015, filled squares with their 1σ uncertainties), with the linear matter projected correlation function multiplied by the product of the galaxy and black hole large-scale biases with Qbh=1 (panels a and c) and Qbh=2 (panels b and d). The solid red and long-dashed black lines refer to the large-scale bias derived, respectively, from the observed and intrinsic Mbh-Mstar relations. It is clear that the models derived from the intrinsic Mbh-Mstar relation (solid red lines) provide a better match to the data (see text for details).

Extended Data Fig. 4 Predicted bias as a function of black hole mass.

Similar format to Figure 2 but now showing the function b(Mbh) expected from the observed/biased (dashed) and intrinsic (solid) Mbh-σ scaling relations.

Extended Data Fig. 5 Table 1.

Black hole mass function retrieved from the intrinsic Mbh-Mstar relation.

Source data

Source Data for Fig. 3

Data on the local black hole mass functions. Columns are: logMbh [Msun], log(Phi_intrinsic) [Mpc-3 dex-1], 1sigma uncertainty in log(Phi_intrinsic), log(Phi_biased) [Mpc-3 dex-1], 1sigma uncertainty in log(Phi_biased)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, F., Allevato, V., Bernardi, M. et al. Constraining black hole–galaxy scaling relations and radiative efficiency from galaxy clustering. Nat Astron 4, 282–291 (2020). https://doi.org/10.1038/s41550-019-0949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0949-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing