Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment

Abstract

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the ‘savannahs of the sea’ are of major concern in times of climate change and loss of biodiversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of the genomic features for the seagrass species T. testudinum, P. oceanica, Z. marina and C. nodosa.
Fig. 2: Time-calibrated phylogeny and WGT/WGD events across flowering plants that have chromosome-level genome assemblies.
Fig. 3: The loss, contraction and expansion of gene families involved in adaptation to a marine environment.
Fig. 4: Flower development (MADS-box genes) and pollen toolkit genes.

Similar content being viewed by others

Data availability

The DNA sequencing data for the C. nodosa genome assembly have been deposited in the NCBI database under BioProject PRJNA1041560 via the link https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1041560. All assemblies and annotations for all seagrass species discussed in the current paper can be found at https://bioinformatics.psb.ugent.be/gdb/seagrasses/. The transcriptome data (including raw data and clean data) and sequencing QC reports for C. nodosa can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Cymnodnscriptome_2, the transcriptome data and sequencing QC reports for P. oceanica can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Posocenscriptome_2, the transcriptome data and sequencing QC reports for T. testudinum can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Thatesnscriptome_4 and the transcriptome data for Z. marina are from ref. 15. For the public databases, the RFAM database v.14.7 can be downloaded at https://ftp.ebi.ac.uk/pub/databases/Rfam/14.7/, the UniProt database can be accessed from the web at http://www.uniprot.org and downloaded from http://www.uniprot.org/downloads and the NCBI nucleotide database can be accessed via https://www.ncbi.nlm.nih.gov/.

References

  1. Green, E. P. & Short, F. T. World Atlas of Seagrasses: Prepared by the UNEP World Conservation Monitoring Centre 48–58 (Univ. California Press, 2003).

  2. Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350, 3–20 (2007).

    Article  Google Scholar 

  3. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  Google Scholar 

  4. McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041 (2020).

    Article  ADS  Google Scholar 

  5. Duffy, J. E. et al. Toward a coordinated global observing system for seagrasses and marine macroalgae. Front. Mar. Sci. 6, 317 (2019).

    Article  Google Scholar 

  6. Gallagher, A. J. et al. Tiger sharks support the characterization of the world’s largest seagrass ecosystem. Nat. Commun. 13, 6328 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bertelli, C. M. & Unsworth, R. K. F. Protecting the hand that feeds us: seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83, 425–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Nordlund, L., Koch, E., Barbier, E. & Creed, J. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11, e0163091 (2016).

    Article  Google Scholar 

  9. Unsworth, R. K. F., Cullen-Unsworth, L. C., Jones, B. L. H. & Lilley, R. J. The planetary role of seagrass conservation. Science 377, 609–613 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reusch, T. B. H. et al. Lower Vibrio spp. abundances in Zostera marina leaf canopies suggest a novel ecosystem function for temperate seagrass beds. Mar. Biol. 168, 149 (2021).

    Article  Google Scholar 

  12. Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).

    Article  PubMed  Google Scholar 

  13. Duarte, C. M., Sintes, T. & Marbà, N. Assessing the CO2 capture potential of seagrass restoration projects. J. Appl. Ecol. 50, 1341–1349 (2013).

    Article  CAS  Google Scholar 

  14. Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    Article  ADS  CAS  Google Scholar 

  15. Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chen, L.-Y. et al. Phylogenomic analyses of Alismatales shed light into adaptations to aquatic environments. Mol. Biol. Evol. 39, msac079 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma, X. et al. Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass). F1000Res. 10, 289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, L. et al. Ocean current patterns drive the worldwide colonization of eelgrass (Zostera marina). Nat. Plants 9, 1207–1220 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dubin, M. J., Mittelsten Scheid, O. & Becker, C. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Vicient, C. M. & Casacuberta, J. M. Impact of transposable elements on polyploid plant genomes. Ann. Bot. 120, 195–207 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Böse, M., Lüthgens, C., Lee, J. R. & Rose, J. Quaternary glaciations of northern Europe. Quat. Sci. Rev. 44, 1–25 (2012).

    Article  ADS  Google Scholar 

  22. Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    Article  PubMed  Google Scholar 

  23. Murat, F., Armero, A., Pont, C., Klopp, C. & Salse, J. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 49, 490–496 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Sensalari, C., Maere, S. & Lohaus, R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 38, 530–532 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Zwaenepoel, A. & Van de Peer, Y. Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol. Biol. Evol. 36, 1384–1404 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Arber, A. Water Plants: A Study of Aquatic Angiosperms (Cambridge Univ. Press, 1920).

  27. Den Hartog, C. The Seagrasses of the World (North Holland, 1970).

  28. Harris, B. J., Harrison, C. J., Hetherington, A. M. & Williams, T. A. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata. Curr. Biol. 30, 2001–2012.e2002 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Shulaev, V., Silverman, P. & Raskin, I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385, 718–721 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Golicz, A. A. et al. Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J. Exp. Bot. 66, 1489–1498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sasidharan, R. & Voesenek, L. A. C. J. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169, 3–12 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hartman, S. et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 10, 4020 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Van de Poel, B., Smet, D. & Van Der Straeten, D. Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiol. 169, 61–72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sogin, E. M. et al. Sugars dominate the seagrass rhizosphere. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01740-z (2022).

  35. Kuo, J., Cambridge, M. L. & Kirkman, H. in Seagrasses of Australia: Structure, Ecology and Conservation (eds Larkum, A. W. D. et al.) 93–125 (Springer International, 2018).

  36. Barnabas, A. D. & Arnott, H. J. Zostera capensis Setchell: root structure in relation to function. Aquat. Bot. 27, 309–322 (1987).

    Article  Google Scholar 

  37. Taylor, A. R. A. Studies of the development of Zostera marina L.: II. Germination and seedling development. Can. J. Bot. 35, 477–499 (1957).

    Article  ADS  Google Scholar 

  38. Zhuo, C. et al. Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. Sci. Adv. 8, eabm8145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, Q. et al. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25, 3976–3987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barros, J. & Dixon, R. A. Plant phenylalanine/tyrosine ammonia-lyases. Trends Plant Sci. 25, 66–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, B. et al. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. N. Phytol. 186, 514–525 (2010).

    Article  Google Scholar 

  42. Strullu-Derrien, C., Selosse, M.-A., Kenrick, P. & Martin, F. M. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. N. Phytol. 220, 1012–1030 (2018).

    Article  Google Scholar 

  43. Kohout, P. et al. Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol. Ecol. 80, 216–235 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Moora, M. et al. AM fungal communities inhabiting the roots of submerged aquatic plant Lobelia dortmanna are diverse and include a high proportion of novel taxa. Mycorrhiza 26, 735–745 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Bohrer, K. E., Friese, C. F. & Amon, J. P. Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14, 329–337 (2004).

    Article  PubMed  Google Scholar 

  46. Nielsen, S. L., Thingstrup, I. & Wigand, C. Apparent lack of vesicular–arbuscular mycorrhiza (VAM) in the seagrasses Zostera marina L. and Thalassia testudinum Banks ex König. Aquat. Bot. 63, 261–266 (1999).

    Article  Google Scholar 

  47. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Chang, J. et al. The genome of the king protea, Protea cynaroides. Plant J. 113, 262–276 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Y. et al. An angiosperm NLR atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion. Mol. Plant 14, 2015–2031 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Scharf, K. D., Berberich, T., Ebersberger, I. & Nover, L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim. Biophys. Acta 1819, 104–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Papazian, S., Parrot, D., Buryskova, B., Weinberger, F. & Tasdemir, D. Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Sci. Rep. 9, 3323 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  52. Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Teles, Y. C. F., Souza, M. S. R. & Souza, M. F. V. Sulphated flavonoids: biosynthesis, structures, and biological activities. Molecules https://doi.org/10.3390/molecules23020480 (2018).

  54. Grignon-Dubois, M. & Rezzonico, B. Phenolic chemistry of the seagrass Zostera noltei Hornem. Part 1: first evidence of three infraspecific flavonoid chemotypes in three distinctive geographical regions. Phytochemistry 146, 91–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Vilas-Boas, C., Sousa, E., Pinto, M. & Correia-da-Silva, M. An antifouling model from the sea: a review of 25 years of zosteric acid studies. Biofouling 33, 927–942 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. van Zelm, E., Zhang, Y. & Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71, 403–433 (2020).

    Article  PubMed  Google Scholar 

  57. Gaxiola, R. A. et al. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl Acad. Sci. USA 98, 11444–11449 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kumar, T., Uzma, M. R. K., Abbas, Z. & Ali, G. M. Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol. Biotechnol. 56, 199–209 (2014).

  59. Yang, Y. et al. Overexpression of a Populus trichocarpa H+-pyrophosphatase gene PtVP1.1 confers salt tolerance on transgenic poplar. Tree Physiol. 35, 663–677 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Duan, X. G., Yang, A. F., Gao, F., Zhang, S. L. & Zhang, J. R. Heterologous expression of vacuolar H(+)-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma 232, 87–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura, R. L. & Gaber, R. F. Ion selectivity of the Kat1 K+ channel pore. Mol. Membr. Biol. 26, 293–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Morris, E. R., Powell, D. A., Gidley, M. J. & Rees, D. A. Conformations and interactions of pectins. I. Polymorphism between gel and solid states of calcium polygalacturonate. J. Mol. Biol. 155, 507–516 (1982).

    Article  CAS  PubMed  Google Scholar 

  63. Gloaguen, V. et al. Structural characterization and cytotoxic properties of an apiose-rich pectic polysaccharide obtained from the cell wall of the marine phanerogam Zostera marina. J. Nat. Prod. 73, 1087–1092 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Byrt, C. S., Munns, R., Burton, R. A., Gilliham, M. & Wege, S. Root cell wall solutions for crop plants in saline soils. Plant Sci. 269, 47–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Mølhøj, M., Verma, R. & Reiter, W. D. The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J. 35, 693–703 (2003).

    Article  PubMed  Google Scholar 

  66. Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl Sci. Rev. 4, 721–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Natarajan, P. et al. A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina. Commun. Biol. 4, 851 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dolferus, R. et al. Functional analysis of lactate dehydrogenase during hypoxic stress in Arabidopsis. Funct. Plant Biol. 35, 131–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Baena-González, E., Rolland, F., Thevelein, J. M. & Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942 (2007).

    Article  ADS  PubMed  Google Scholar 

  70. Cho, H.-Y., Lu, M.-Y. J. & Shih, M.-C. The SnRK1–eIFiso4G1 signaling relay regulates the translation of specific mRNAs in Arabidopsis under submergence. N. Phytol. 222, 366–381 (2019).

    Article  CAS  Google Scholar 

  71. Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian–Turonian oceanic anoxic event (OAE2): model–data comparison. Paleoceanography https://doi.org/10.1029/2012PA002351 (2012).

  72. Selby, D., Mutterlose, J. & Condon, D. J. U–Pb and Re–Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: implications for timescale calibration, osmium isotope seawater composition and Re–Os systematics in organic-rich sediments. Chem. Geol. 265, 394–409 (2009).

    Article  ADS  CAS  Google Scholar 

  73. Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems 3rd edn (Cambridge University Press, 2010).

  74. Campbell, J. E. & Fourqurean, J. W. Mechanisms of bicarbonate use influence the photosynthetic carbon dioxide sensitivity of tropical seagrasses. Limnol. Oceanogr. 58, 839–848 (2013).

    Article  ADS  CAS  Google Scholar 

  75. Capó-Bauçà, S., Iñiguez, C., Aguiló-Nicolau, P. & Galmés, J. Correlative adaptation between Rubisco and CO2-concentrating mechanisms in seagrasses. Nat. Plants 8, 706–716 (2022).

    Article  PubMed  Google Scholar 

  76. Rubio, L. et al. Direct uptake of HCO3 in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy. Plant Cell Environ. 40, 2820–2830 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Larkum, A. W. D., Davey, P. A., Kuo, J., Ralph, P. J. & Raven, J. A. Carbon-concentrating mechanisms in seagrasses. J. Exp. Bot. 68, 3773–3784 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132 (2013).

    Article  ADS  Google Scholar 

  79. Chen, S., Peng, W., Ansah, E. O., Xiong, F. & Wu, Y. Encoded C4 homologue enzymes genes function under abiotic stresses in C3 plant. Plant Signal. Behav. 17, 2115634 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Han, X. et al. Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. Mol. Plant 12, 847–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. McClung, C. R. The plant circadian oscillator. Biology 8, 14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mohr, W. et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature 600, 105–109 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tarquinio, F. et al. Microorganisms facilitate uptake of dissolved organic nitrogen by seagrass leaves. ISME J. 12, 2796–2800 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kuo, J. & Hartog, C. D. in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D. et al.) 51–87 (Springer Netherlands, 2006).

  85. Krizek, B. A. & Fletcher, J. C. Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet. 6, 688–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Lohmann, J. U. & Weigel, D. Building beauty: the genetic control of floral patterning. Dev. Cell 2, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Remizowa, M. V., Sokoloff, D. D. & Rudall, P. J. Evolutionary history of the monocot flower. Ann. Mo. Bot. Gard. 97, 617–645 (2010).

    Article  Google Scholar 

  88. Ackerman, J. D. in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D. et al.) 89–109 (Springer Netherlands, 2006).

  89. Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. https://doi.org/10.1126/sciadv.abc6434 (2020).

  90. Cook, C. D. K. The number and kinds of embryo-bearing plants which have become aquatic: a survey. Perspect. Plant Ecol. Evol. Syst. 2, 79–102 (1999).

    Article  Google Scholar 

  91. Waycott, M., Biffin, E. & Les, D. H. in Seagrasses of Australia: Structure, Ecology and Conservation (eds Larkum, A. W. D. et al.) 129–154 (Springer International, 2018).

  92. Pazzaglia, J., Reusch, T. B. H., Terlizzi, A., Marín-Guirao, L. & Procaccini, G. Phenotypic plasticity under rapid global changes: the intrinsic force for future seagrasses survival. Evol. Appl. 14, 1181–1201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Flowers, T. J., Galal, H. K. & Bromham, L. Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct. Plant Biol. 37, 604–612 (2010).

    Article  Google Scholar 

  94. Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

  95. Dudchenko, O. et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. Preprint at bioRxiv https://doi.org/10.1101/254797 (2018).

  96. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, Z. et al. Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. Genome Res. 30, 898–909 (2020).

  98. Yeo, S., Coombe, L., Warren, R. L., Chu, J. & Birol, I. ARCS: scaffolding genome drafts with linked reads. Bioinformatics 34, 725–731 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Bruna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom. Bioinform. 3, lqaa108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Keilwagen, J., Hartung, F. & Grau, J. GeMoMa: homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods Mol. Biol. 1962, 161–177 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Abeel, T., Van Parys, T., Saeys, Y., Galagan, J. & Van de Peer, Y. GenomeView: a next-generation genome browser. Nucleic Acids Res. 40, e12 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 49, D192–D200 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article  Google Scholar 

  112. Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645–656 (2013).

    Article  PubMed  Google Scholar 

  113. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 9, 18 (2008).

    Article  Google Scholar 

  117. Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yan, H., Bombarely, A. & Li, S. DeepTE: a computational method for de novo classification of transposons with convolutional neural network. Bioinformatics 36, 4269–4275 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Ma, J. & Bennetzen, J. L. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl Acad. Sci. USA 101, 12404–12410 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zwaenepoel, A. & Van de Peer, Y. wgd—simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35, 2153–2155 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Proost, S. et al. i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, e11 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Sensalari, C., Maere, S. & Lohaus, R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics https://doi.org/10.1093/bioinformatics/btab602 (2021).

  124. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Löytynoja, A. & Goldman, N. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl Acad. Sci. USA 102, 10557–10562 (2005).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  126. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. An, D. et al. Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proc. Natl Acad. Sci. USA 116, 18893–18899 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. O’Brien, K. P., Remm, M. & Sonnhammer, E. L. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 33, D476–D480 (2005).

    Article  PubMed  Google Scholar 

  130. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Rozewicki, J., Li, S., Amada, K. M., Standley, D. M. & Katoh, K. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 47, W5–W10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.V.d.P., J.L.O., T.B.H.R. and G.P. acknowledge funding from the DOE, JGI, Berkeley, California, USA, under the Community Sequencing Program 2018, project no. 504341 (Marine Angiosperm Genomes Initiative). The work (proposal no. 10.46936/10.25585/60001196) conducted by the DOE JGI (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the DOE operated under contract no. DE-AC02-05CH11231. The Community Sequencing Program award also included support for sequencing and plant bioinformatics from HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, and DNA/RNA extraction and processing from the Arizona Genomics Institute, Tucson, Arizona. Y.V.d.P. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant no. 833522) and from Ghent University (Methusalem funding, grant no. BOF.MET.2021.0005.01). P.N. acknowledges funding by the Deutsche Forschungsgemeinschaft (German Research Foundation)—project no. 497665889, 1606/3-1 for research on Potamogeton. M.K. acknowledges funding through the Helmholtz School for Marine Data Science, grant no. HIDSS-0005. The work of G.P., E.D., J.P. and M.R. was partially supported by the project Marine Hazard, PON03PE_00203_1 (MUR, Italian Ministry of University and Research) and by the National Biodiversity Future Centre Program, Italian Ministry of University and Research, PNRR, Missione 4 Componente 2 Investimento 1.4 (project no. CN00000033). D.-D.M., L.L.W., M.P.T. and Y.Y.S. acknowledge funding from Universiti Malaysia Terengganu (SRG Vot55317). The work of A.A.B. was performed within the Papanin Institute for Biology of Inland Waters RAS state assignment (theme no. 121051100099-5).

Author information

Authors and Affiliations

Authors

Contributions

Y.V.d.P., J.L.O., T.B.H.R. and G.P. conceived the project, provided the overall evolutionary context and wrote the proposal. Y.V.d.P., J.L.O., T.B.H.R., G.P. and S.V. wrote and edited the main paper and organized and further edited the individual contributions for the Supplementary Notes (as listed in the Supplementary Information). All authors then provided specific feedback in forming the final version. J.L.O., J.E.C., G.P., L.M.-G., T.B.H.R., A.A.B., A.M. and P.N. contributed to sample tissue collection, preparation and shipping for DNA extraction. S. Rajasekar, L.B., G.H., J.W. and M.Y. performed the HMW DNA extractions and quality control (QC), as well as RNA extractions and QC for annotation assistance. J.S. and J.G. coordinated the genome sequencing management steps for the seagrasses. A.M. and P.N. coordinated the genome sequencing management steps for Potamogeton. K.B. was responsible for overall JGI technical coordination and was the liaison with the principal investigators and project manager. J.J., C.P., J.S., Y.V.d.P., S. Rajasekar, A.S., J.V.d.V. and T.B. performed the analysis activities surrounding genome assembly (PacBio and HiC), supporting transcriptomics for annotation. J.J., Y.V.d.P., S. Rombauts and X.M. were responsible for the deposition and maintenance of the species on the ORCAE site and the deposition of the new genomes to NCBI and Phytozome. J.C., X.M. and S. Rombauts were responsible for the paper graphics. The authors responsible for the analysis of the architectural features of genome evolution and annotation of specific gene families, including the written contributions to the main paper and Supplementary Information sections, were as follows: M.L.C. and L.A. for the orthogroups master extended data; M.L.C., A.S., X.M. and J.C. for the overview of gene families; H.C., X.M., J.C. and Y.V.d.P. for WGDs/WGTs and dating; M.L.C. and X.M. for TEs and repeat elements; M.K. and T.B.H.R. for organellar genomes; M.L.C. and L.A. for non-protein-coding RNA families; S.V. and X.M. for stomata; S.V. and X.M. for volatile metabolites, signalling and ethylene; X.M. and S.V. for plant body development, lignification and vascular tissue; T.B. for plant defence and R-genes; L.M.-G. for heat shock factors; S.V. and X.M. for flavonoids and phenolics; S.V. for cellular salt tolerance; S.V. and B.V. for cell wall plasticity; S.V. and X.M. for hypoxia; G.P. for light perception, photosynthesis, light harvesting and transcription factors; G.P. and M.R. for carbon acquisition and CCMs; G.P. for UVB tolerance; G.P. and E.D. for clock genes; J.P. for No Apical Meristem genes; and D.-D.M., L.L.W., M.P.T. and Y.Y.S. for nitrogen metabolism.

Corresponding authors

Correspondence to Thorsten B. H. Reusch, Gabriele Procaccini, Jeanine L. Olsen or Yves Van de Peer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Sean Graham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 The copy number of guard cell toolkit genes
Extended Data Table 2 The copy number of genes involved in triterpenes, JA, MeJA/MeSA and ethylene biosynthesis and signaling pathways
Extended Data Table 3 The copy number of genes involved in vascular development
Extended Data Table 4 The copy number of genes involved in lignin biosynthesis
Extended Data Table 5 The copy number of resistance (NRL) genes and heat shock factors (HSF)
Extended Data Table 6 The copy number of genes involved in flavonoid biosynthesis
Extended Data Table 7 The copy number of genes involved in salt stress
Extended Data Table 8 The copy number of genes involved in hypoxia tolerance
Extended Data Table 9 The copy number of CO2-concentrating mechanisms (CCM)-related genes (Carbonic anhydrases, Boron transporters and proton pumps, C4-metabolism, Rubisco activase)
Extended Data Table 10 The copy number of gene families involved in nitrogen metabolism

Supplementary information

Supplementary Information

Five sections including Supplementary Figs. 1.1–5.9, Tables 1.1–5.9 and Notes.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Vanneste, S., Chang, J. et al. Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment. Nat. Plants 10, 240–255 (2024). https://doi.org/10.1038/s41477-023-01608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01608-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing