Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SIAMESE-RELATED1 imposes differentiation of stomatal lineage ground cells into pavement cells

Abstract

The leaf epidermis represents a multifunctional tissue consisting of trichomes, pavement cells and stomata, the specialized cellular pores of the leaf. Pavement cells and stomata both originate from regulated divisions of stomatal lineage ground cells (SLGCs), but whereas the ontogeny of the stomata is well characterized, the genetic pathways activating pavement cell differentiation remain relatively unexplored. Here, we reveal that the cell cycle inhibitor SIAMESE-RELATED1 (SMR1) is essential for timely differentiation of SLGCs into pavement cells by terminating SLGC self-renewal potency, which depends on CYCLIN A proteins and CYCLIN-DEPENDENT KINASE B1. By controlling SLGC-to-pavement cell differentiation, SMR1 determines the ratio of pavement cells to stomata and adjusts epidermal development to suit environmental conditions. We therefore propose SMR1 as an attractive target for engineering climate-resilient plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SMR1 specifically controls epidermal pavement cell number.
Fig. 2: smr1 mutant pavement cells behave like SLGCs.
Fig. 3: Pavement cell division rates of smr1, cdkb1;1ckdb1;2, smr1cdkb1;1cdkb1;2, cyca2;1cyca2;3cyca2;4 (cyca2.134) and smr1cyca2.134 mutant leaves.
Fig. 4: Ectopic SMR1 expression triggers pavement cell differentiation of stomatal precursor cells.
Fig. 5: The smr1 mutant epidermal phenotype is not solely caused by reduced ploidy levels.
Fig. 6: Altering SMR1 levels dampens the plant’s response to drought.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. Source data are provided with this paper.

References

  1. Liu, S., Jobert, F., Rahneshan, Z., Doyle, S. M. & Robert, S. Solving the puzzle of shape regulation in plant epidermal pavement cells. Annu. Rev. Plant Biol. 72, 525–550 (2021).

    CAS  PubMed  Google Scholar 

  2. Glover, B. J. Differentiation in plant epidermal cells. J. Exp. Bot. 51, 497–505 (2000).

    CAS  PubMed  Google Scholar 

  3. Jacques, E., Verbelen, J.-P. & Vissenberg, K. Review on shape formation in epidermal pavement cells of the Arabidopsis leaf. Funct. Plant Biol. 41, 914–921 (2014).

    PubMed  Google Scholar 

  4. Javelle, M., Vernoud, V., Rogowsky, P. M. & Ingram, G. C. Epidermis: the formation and functions of a fundamental plant tissue. N. Phytol. 189, 17–39 (2011).

    CAS  Google Scholar 

  5. Zuch, D. T. et al. Cell biology of the leaf epidermis: fate specification, morphogenesis and coordination. Plant Cell 34, 209–227 (2022).

    PubMed  Google Scholar 

  6. Geisler, M., Nadeau, J. & Sack, F. D. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12, 2075–2086 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pillitteri, L. J. & Dong, J. Stomatal development in Arabidopsis. Arabidopsis Book 11, e0162 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Shpak, E. D., McAbee, J. M., Pillitteri, L. J. & Torii, K. U. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309, 290–293 (2005).

    CAS  PubMed  Google Scholar 

  9. Ho, C.-M. K., Bringmann, M., Oshima, Y., Mitsuda, N. & Bergmann, D. C. Transcriptional profiling reveals signatures of latent developmental potential in Arabidopsis stomatal lineage ground cells. Proc. Natl Acad. Sci. USA 118, e2021682118 (2021).

    PubMed  PubMed Central  Google Scholar 

  10. De Veylder, L., Larkin, J. C. & Schnittger, A. Molecular control and function of endoreplication in development and physiology. Trends Plant Sci. 16, 624–634 (2011).

    PubMed  Google Scholar 

  11. Lammens, T. et al. Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc. Natl Acad. Sci. USA 105, 14721–14726 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Churchman, M. L. et al. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18, 3145–3157 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Roeder, A. H. et al. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol. 8, e1000367 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Han, S.-K. et al. Deceleration of the cell cycle underpins a switch from proliferative to terminal divisions in plant stomatal lineage. Dev. Cell 57, 569–582 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Donnelly, P. M., Bonetta, D., Tsukaya, H., Dengler, R. E. & Dengler, N. G. Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev. Biol. 215, 407–419 (1999).

    CAS  PubMed  Google Scholar 

  16. Andriankaja, M. et al. Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev. Cell 22, 64–78 (2012).

    CAS  PubMed  Google Scholar 

  17. MacAlister, C. A., Ohashi-Ito, K. & Bergmann, D. C. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445, 537–540 (2007).

    CAS  PubMed  Google Scholar 

  18. Lampard, G. R., Macalister, C. A. & Bergmann, D. C. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322, 1113–1116 (2008).

    CAS  PubMed  Google Scholar 

  19. Nadeau, J. A. & Sack, F. D. Control of stomatal distribution on the Arabidopsis leaf surface. Science 296, 1697–1700 (2002).

    CAS  PubMed  Google Scholar 

  20. Horst, R. J. et al. Molecular framework of a regulatory circuit initiating two-dimensional spatial patterning of stomatal lineage. PLoS Genet. 11, e1005374 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Van Leene, J. et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 6, 397 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Boudolf, V. et al. B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. Plant Cell 16, 945–955 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie, Z. et al. Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. Plant Cell 22, 2306–2321 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanneste, S. et al. Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J. 30, 3430–3441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dubois, M. et al. SIAMESE-RELATED1 is regulated posttranslationally and participates in repression of leaf growth under moderate drought. Plant Physiol. 176, 2834–2850 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhave, N. S. et al. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems. Planta 229, 357–367 (2009).

    CAS  PubMed  Google Scholar 

  27. Kumar, R. et al. Development of an efficient and reproducible regeneration system in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 23, 945–954 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Bhosale, R., Maere, S. & De Veylder, L. Endoreplication as a potential driver of cell wall modifications. Curr. Opin. Plant Biol. 51, 58–65 (2019).

    CAS  PubMed  Google Scholar 

  29. Han, S.-K., Kwak, J. M. & Qi, X. Stomatal lineage control by developmental program and environmental cues. Front. Plant Sci. 12, 751852 (2021).

    PubMed  PubMed Central  Google Scholar 

  30. Skirycz, A. et al. Survival and growth of Arabidopsis plants given limited water are not equal. Nat. Biotechnol. 29, 212–214 (2011).

    CAS  PubMed  Google Scholar 

  31. Doheny-Adams, T., Hunt, L., Franks, P. J., Beerling, D. J. & Gray, J. E. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Phil. Trans. R. Soc. B 367, 547–555 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bramsiepe, J. et al. Endoreplication controls cell fate maintenance. PLoS Genet. 6, e1000996 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Bhosale, R. et al. A spatiotemporal DNA endoploidy map of the Arabidopsis root reveals roles for the endocycle in root development and stress adaptation. Plant Cell 30, 2330–2351 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boudolf, V. et al. The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16, 2683–2692 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, K. et al. The CDK inhibitor SIAMESE targets both CDKA;1 and CDKB1 complexes to establish endoreplication in trichomes. Plant Physiol. 184, 165–175 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar, N. et al. Functional conservation in the SIAMESE-RELATED family of cyclin-dependent kinase inhibitors in land plants. Plant Cell 27, 3065–3080 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, K.-Z. et al. Phosphorylation of serine 186 of bHLH transcription factor SPEECHLESS promotes stomatal development in Arabidopsis. Mol. Plant 8, 783–795 (2015).

    CAS  PubMed  Google Scholar 

  38. Claeys, H. & Inze, D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol. 162, 1768–1779 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nowack, M. K. et al. Genetic framework of cyclin-dependent kinase function in Arabidopsis. Dev. Cell 22, 1030–1040 (2012).

    CAS  PubMed  Google Scholar 

  40. Vlieghe, K. et al. The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr. Biol. 15, 59–63 (2005).

    CAS  PubMed  Google Scholar 

  41. Fendrych, M. et al. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr. Biol. 24, 931–940 (2014).

    CAS  PubMed  Google Scholar 

  42. Karimi, M., Inzé, D. & Depicker, A. GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    CAS  PubMed  Google Scholar 

  43. Decaestecker, W. et al. CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31, 2868–2887 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS  PubMed  Google Scholar 

  45. De Veylder, L. et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13, 1653–1667 (2001).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Bleys for critical reading and helping in preparing the manuscript and M. Vermeersch for expertise on the drought phenotyping platform. This work was supported by grants from the Research Foundation Flanders (nos. G011420N and G010820N). I.A. and M.D. acknowledge support from a ‘Don Carlos Antonio Lopez’ by El Programa Nacional de Becas from Paraguay predoc (BECAL no. 164/2017) and a Research Foundation Flanders postdoc grant (no. 12Q7923N), respectively.

Author information

Authors and Affiliations

Authors

Contributions

L.D.V. supervised the project. M.D., I.A., D.I., J.E.G. and L.D.V. designed the experiments. M.D., I.A., S.P., R.T.B., R.A.B. and I.V. performed the experiments. M.D., I.A. and L.D.V. wrote and modified the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lieven De Veylder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figs. 1–5.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubois, M., Achon, I., Brench, R.A. et al. SIAMESE-RELATED1 imposes differentiation of stomatal lineage ground cells into pavement cells. Nat. Plants 9, 1143–1153 (2023). https://doi.org/10.1038/s41477-023-01452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01452-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing