Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adaptor protein complex interaction map in Arabidopsis identifies P34 as a common stability regulator

Abstract

Adaptor protein (AP) complexes are evolutionarily conserved vesicle transport regulators that recruit coat proteins, membrane cargoes and coated vesicle accessory proteins. As in plants endocytic and post-Golgi trafficking intersect at the trans-Golgi network, unique mechanisms for sorting cargoes of overlapping vesicular routes are anticipated. The plant AP complexes are part of the sorting machinery, but despite some functional information, their cargoes, accessory proteins and regulation remain largely unknown. Here, by means of various proteomics approaches, we generated the overall interactome of the five AP and the TPLATE complexes in Arabidopsis thaliana. The interactome converged on a number of hub proteins, including the thus far unknown adaptin binding-like protein, designated P34. P34 interacted with the clathrin-associated AP complexes, controlled their stability and, subsequently, influenced clathrin-mediated endocytosis and various post-Golgi trafficking routes. Altogether, the AP interactome network offers substantial resources for further discoveries of unknown endomembrane trafficking regulators in plant cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrative interaction network of six multimeric adaptor complexes and their accessory proteins.
Fig. 2: Selection from the AP interactome of putative regulators and their crosstalk in vesicle trafficking.
Fig. 3: GO term enrichment analysis of the AP-associated proteins.
Fig. 4: Validation of AP-5, AAK1, BAG4 and P34 protein interaction networks.
Fig. 5: P34 regulates the stability of AP-1, AP-2 and AP-4.
Fig. 6: P34 regulates vesicle trafficking depending on AP-1, AP-2 and AP-4.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD035454 and 10.6019/PXD035454. Source data are provided with this paper.

References

  1. Kirchhausen, T., Owen, D. & Harrison, S. C. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 6, a016725 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hirst, J. et al. The fifth adaptor protein complex. PLoS Biol. 9, e1001170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanger, A., Hirst, J., Davies, A. K. & Robinson, M. S. Adaptor protein complexes and disease at a glance. J. Cell Sci. 132, jcs222992 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Aniento, F., Sánchez de Medina Hernández, V., Dagdas, Y., Rojas-Pierce, M. & Russinova, E. Molecular mechanisms of endomembrane trafficking in plants. Plant Cell 34, 146–173 (2022).

    Article  PubMed  Google Scholar 

  5. Shimizu, Y. et al. Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants. Nat. Commun. 12, 1901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arora, D. & Van Damme, D. Motif-based endomembrane trafficking. Plant Physiol. 186, 221–238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park, M. et al. Arabidopsis μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc. Natl Acad. Sci. USA 110, 10318–10323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Teh, O.-K. et al. The AP-1 µ adaptin is required for KNOLLE localization at the cell plate to mediate cytokinesis in Arabidopsis. Plant Cell Physiol. 54, 838–847 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, J.-G. et al. HAPLESS13, the Arabidopsis µ1 adaptin, is essential for protein sorting at the trans-Golgi network/early endosome. Plant Physiol. 162, 1897–1910 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, M. et al. ADAPTOR PROTEIN-1 complex-mediated post-Golgi trafficking is critical for pollen wall development in Arabidopsis. N. Phytol. 235, 472–487 (2022).

    Article  CAS  Google Scholar 

  11. Kim, S. Y. et al. Adaptor protein complex 2-mediated endocytosis is crucial for male reproductive organ development in Arabidopsis. Plant Cell 25, 2970–2985 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Rubbo, S. et al. The clathrin adaptor complex AP-2 mediates endocytosis of BRASSINOSTEROID INSENSITIVE1 in Arabidopsis. Plant Cell 25, 2986–2997 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, D. et al. Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical Tyr-based motif. Plant Cell 32, 3598–3612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshinari, A. et al. Polar localization of the borate exporter BOR1 requires AP2-dependent endocytosis. Plant Physiol. 179, 1569–1580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan, L. et al. Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140, 3826–3837 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Yamaoka, S. et al. Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. Plant Cell 25, 2958–2969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng, Q.-N., Liang, X., Li, S. & Zhang, Y. The ADAPTOR PROTEIN-3 complex mediates pollen tube growth by coordinating vacuolar targeting and organization. Plant Physiol. 177, 216–225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feraru, E. et al. The AP-3 β adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis. Plant Cell 22, 2812–2824 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wolfenstetter, S., Wirsching, P., Dotzauer, D., Schneider, S. & Sauer, N. Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. Plant Cell 24, 215–232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zwiewka, M. et al. The AP-3 adaptor complex is required for vacuolar function in. Arabidopsis. Cell Res. 21, 1711–1722 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Fuji, K. et al. The adaptor complex AP-4 regulates vacuolar protein sorting at the trans-Golgi network by interacting with VACUOLAR SORTING RECEPTOR1. Plant Physiol. 170, 211–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Hatsugai, N. et al. Involvement of adapter protein complex 4 in hypersensitive cell death induced by avirulent bacteria. Plant Physiol. 176, 1824–1834 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heinze, L. et al. EPSIN1 and MTV1 define functionally overlapping but molecularly distinct trans-Golgi network subdomains in. Arabidopsis. Proc. Natl Acad. Sci. USA 117, 25880–25889 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Pertl-Obermeyer, H. et al. Identification of cargo for adaptor protein (AP) complexes 3 and 4 by sucrose gradient profiling. Mol. Cell. Proteom. 15, 2877–2889 (2016).

    Article  CAS  Google Scholar 

  25. Gadeyne, A. et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156, 691–704 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Johnson, A. et al. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proc. Natl Acad. Sci. USA 118, e2113046118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Damme, D. et al. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell 18, 3502–3518 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, J. et al. Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc. Natl Acad. Sci. USA 118, e2023456118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Merrifield, C. J. & Kaksonen, M. Endocytic accessory factors and regulation of clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 6, a016733 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borner, G. H. H., Harbour, M., Hester, S., Lilley, K. S. & Robinson, M. S. Comparative proteomics of clathrin-coated vesicles. J. Cell Biol. 175, 571–578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borner, G. H. H. et al. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J. Cell Biol. 197, 141–160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Praefcke, G. J. K. et al. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371–4383 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmid, E. M. et al. Role of the AP2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol. 4, e262 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dahhan, D. A. et al. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell 34, 2150–2173 (2022).

    Article  PubMed  Google Scholar 

  36. Arora, D. et al. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32, 3388–3407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adamowski, M. et al. A functional study of AUXILIN-LIKE1 and 2, two putative clathrin uncoating factors in Arabidopsis. Plant Cell 30, 700–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, L. et al. SNARE proteins VAMP721 and VAMP722 mediate the post-Golgi trafficking required for auxin-mediated development in Arabidopsis. Plant J. 108, 426–440 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Zouhar, J. & Sauer, M. Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion. Plant Cell 26, 4232–4244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ritter, B. et al. NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis. PLoS Biol. 11, e1001670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kabbage, M., Kessens, R., Bartholomay, L. C. & Williams, B. The life and death of a plant cell. Annu. Rev. Plant Biol. 68, 375–404 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Gulbranson, D. R. et al. AAGAB controls AP2 adaptor assembly in clathrin-mediated endocytosis. Dev. Cell 50, 436–446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pohler, E. et al. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. Nat. Genet. 44, 1272–1276 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Conner, S. D. & Schmid, S. L. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J. Cell Biol. 156, 921–929 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agajanian, M. J. et al. WNT activates the AAK1 kinase to promote clathrin-mediated endocytosis of LRP6 and establish a negative feedback loop. Cell Rep. 26, 79–93 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirst, J. et al. Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol. Biol. Cell 24, 2558–2569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhuang, X. et al. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 25, 4596–4615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lam, B. C., Sage, T. L., Bianchi, F. & Blumwald, E. Regulation of ADL6 activity by its associated molecular network. Plant J. 31, 565–576 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Lauber, M. H. et al. The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J. Cell Biol. 139, 1485–1493 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Favery, B. et al. Arabidopsis formin AtFH6 is a plasma membrane–associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell 16, 2529–2540 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blomme, J. et al. The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biol. 22, 142 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yan, X. et al. Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells. Plant Cell 33, 3057–3075 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Samalova, M., Fricker, M. & Moore, I. Ratiometric fluorescence-imaging assays of plant membrane traffic using polyproteins. Traffic 7, 1701–1723 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Reichardt, I. et al. Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr. Biol. 17, 2047–2053 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Boutté, Y. et al. Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J. 29, 546–558 (2010).

    Article  PubMed  Google Scholar 

  56. Law, K. C., Chung, K. K. & Zhuang, X. An update on coat protein complexes for vesicle formation in plant post-Golgi trafficking. Front. Plant Sci. 13, 826007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Van Leene, J. et al. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat. Protoc. 10, 169–187 (2015).

    Article  PubMed  Google Scholar 

  58. Peden, A. A., Rudge, R. E., Lui, W. W. Y. & Robinson, M. S. Assembly and function of AP-3 complexes in cells expressing mutant subunits. J. Cell Biol. 156, 327–336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rout, M. P. & Field, M. C. The evolution of organellar coat complexes and organization of the eukaryotic cell. Annu. Rev. Biochem. 86, 637–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K. & Höning, S. Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 156, 791–795 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gupta-Rossi, N. et al. The adaptor-associated kinase 1, AAK1, is a positive regulator of the Notch pathway. J. Biol. Chem. 286, 18720–18730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Behl, C. & Breaking, B. A. G. the co-chaperone BAG3 in health and disease. Trends Pharmacol. Sci. 37, 672–688 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Korbei, B. et al. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr. Biol. 23, 2500–2505 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Moulinier-Anzola, J. et al. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Mol. Plant 13, 717–731 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, P. et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun. 10, 5132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Adamowski, M., Matijevic, I. & Friml, J. The role of clathrin in exocytosis and the mutual regulation of endo- and exocytosis in plant cells. Preprint at bioRxiv https://doi.org/10.1101/2021.11.17.468992 (2021).

  67. Van Damme, D. et al. Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proc. Natl Acad. Sci. USA 108, 615–620 (2011).

    Article  PubMed  Google Scholar 

  68. Zhang, C. et al. ROPGAP-dependent interaction between brassinosteroid and ROP2-GTPase signaling controls pavement cell shape in. Arabidopsis. Curr. Biol. 32, 518–531 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Shimada, T. et al. The AP-1 complex is required for proper mucilage formation in Arabidopsis seeds. Plant Cell Physiol. 59, 2331–2338 (2018).

    CAS  PubMed  Google Scholar 

  70. Müdsam, C., Wollschläger, P., Sauer, N. & Schneider, S. Sorting of Arabidopsis NRAMP3 and NRAMP4 depends on adaptor protein complex AP4 and a dileucine-based motif. Traffic 19, 503–521 (2018).

    Article  PubMed  Google Scholar 

  71. Robert, S. et al. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc. Natl Acad. Sci. USA 105, 8464–8469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.-D. & Schumacher, K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18, 715–730 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karimi, M., Inzé, D. & Depicker, A. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Decaestecker, W. et al. CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31, 2868–2887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10, e0124633 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Houbaert, A. et al. POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature 563, 574–578 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Hu, Z. et al. Genome editing-based engineering of CESA3 dual cellulose-inhibitor-resistant plants. Plant Physiol. 180, 827–836 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grefen, C. & Blatt, M. R. A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques 53, 311–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Knight, J. D. R. et al. ProHits-viz: a suite of web tools for visualizing interaction proteomics data. Nat. Methods 14, 645–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Sauer, M., Paciorek, T., Benková, E. & Friml, J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat. Protoc. 1, 98–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Abas, L. et al. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8, 249–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Feng, J. & Ma, L. A method for characterizing embryogenesis in. Arabidopsis. JoVE 126, e55969 (2017).

    Google Scholar 

  84. Zhai, Z., Jung, H.-I. & Vatamaniuk, O. K. Isolation of protoplasts from tissues of 14-day-old seedlings of Arabidopsis thaliana. JoVE 30, e1149 (2009).

    Google Scholar 

  85. Wang, C. et al. Differential regulation of clathrin and its adaptor proteins during membrane recruitment for endocytosis. Plant Physiol. 171, 215–229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Song, K. et al. An A/ENTH domain-containing protein functions as an adaptor for clathrin-coated vesicles on the growing cell plate in Arabidopsis root cells. Plant Physiol. 159, 1013–1025 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, Y.-W. et al. Arabidopsis dynamin-like 2 that binds specifically to phosphatidylinositol 4-phosphate assembles into a high-molecular weight complex in vivo and in vitro. Plant Physiol. 127, 1243–1255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dejonghe, W. et al. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nat. Chem. Biol. 15, 641–649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luo, Y. et al. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nat. Plants 1, 15094 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518–529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Hwang, G. Jürgens and J. Pan for the kind gift of α-AP1G and α-AP2A, α-KNOLLE and α-AP2S antibodies, respectively, M. Sauer, S. Schneider, J. Friml, J. Lin and I. Hara-Nishimura for providing published materials, T. Jacobs for useful discussions and M. De Cock for help in preparing the manuscript. This work was supported by the Research Foundation-Flanders projects (G008416N, G0E5718N and 3G038020 to E.R.), the Belgian Science Policy Office for a postdoctoral fellowship (R.K.), the China Scholarship Council for predoctoral fellowships (P.W., X.Z. and R.W.) and the European Research Council T-Rex (project number 682436 to D.V.D.).

Author information

Authors and Affiliations

Authors

Contributions

W.S., P.W., X.Z. and E.R. initiated the project and designed experiments. W.S., X.Z., R.K., A.H. and N.D.W. did cloning for TAP–MS and AP–MS. D.E., J.V.L., K.G. and G.D.J. performed the MS work and analysed data. W.S. and P.W. did the interactome validation. P.W. performed all the P34 work. E.M. did microscopy. R.A.K. and C.T. contributed materials. D.A., M.V. and D.V.D. did the PL. R.W. and S.V. performed the PIN2 immunolabelling. W.S., P.W. and E.R. wrote the manuscript. All authors revised the manuscript.

Corresponding authors

Correspondence to Wei Siao or Eugenia Russinova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Takashi Ueda, Michael Sauer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dot plot matrix of selected proteins from the AP/TPC interactome.

Quantitative dot plot matrix covering core AP/TPC subunits and a selection of proteins linked to endocytosis/vesicle trafficking. The colour hue of the nodes corresponds with the abundance of each prey in a given experiment, calculated by subtracting the average normalized spectral abundance factor (NSAF) in the control dataset from the average NSAF (bait) of each prey [NSAF (bait - ctrl.)]. The size of the dots reflects the relative abundance of each prey over the different experiments. The identification of each bait protein is shown by an asterisk.

Extended Data Fig. 2 Protein sequence alignment of P34 in eukaryotes.

Amino acid sequence alignment of the P34/AAGAB family in At, Arabidopsis thaliana; Hs, Homo sapiens; Mm, Mus musculus; Ce, Caenorhabditis elegans; Sc, Saccharomyces cerevisiae; Dm, Drosophila melanogaster. The sequences were aligned with the CLC Main Workbench (Qiagen). The colour intensity reflects how conserved a particular position is in the alignment. Dark orange and dark purple represents 100% and 0% identity, respectively.

Extended Data Fig. 3 Protein sequence alignment of AAK1 in eukaryotes.

Amino acid sequence alignment of the NAK family in At, Arabidopsis thaliana; Hs, Homo sapiens; Mm, Mus musculus; Dm, Drosophila melanogaster; Ce, Caenorhabditis elegans, and Sc, Saccharomyces cerevisiae. The sequences were aligned with CLC Main Workbench (Qiagen). The colour intensity reflects how conserved the particular position is in the alignment. Dark orange and dark purple represent 100% and 0% identity, respectively.

Extended Data Fig. 4 rBiFC analysis of AP-5, AAK1 and BAG4.

rBiFC assay of AP-5 subunits (a), AAK1 (b) and BAG4 (c) with different AP subunits quantified in Fig. 4b,e,h, respectively. Scale bars, 20 µm.

Extended Data Fig. 5 rBiFC and co-immunoprecipitation (co-IP) analyses of P34.

rBiFC assays of P34 with different AP subunits (quantified in Fig. 4k) (a,b), with AAK1 and BAG4 (d). c,e, Quantification of rBiFC (YFP/RFP) in (b) and (d), respectively. n = 15, n, number of cells analysed. The significant differences were determined by one way Brown-Forsythe and Welch ANOVA tests combined with Dunnett T3 multiple comparisons test. **P ≤ 0.01, ***P ≤ 0.001; ns, not significant. The bounds of the boxes represent the 25th to 75th percentiles, the center line of the box and the whiskers indicate the median, the minimum and the maximum values, respectively. All individual values were plotted. rBiFC experiments were repeated twice and one representative experiment is shown. Scale bars, 50 µm. f, Validation of the interactions between P34, AP3B, and AP4E by co-IP in tobacco leaves transiently expressing the p35S:P34-mCherry, p35S:AP3B-GFP and p35S:AP4E-GFP constructs. g, co-IP analysis in ap4m-2 protoplasts transiently expressing p35S:P34-GFP. P34-GFP was pulled down with a GFP-trap and AP1G and AP2A were detected with the α-AP1G and α-AP2A antibodies. The p35S:GFP construct was used as a negative control (f,g), The two western blots were repeated two times. One representative experiment is shown.

Source data

Extended Data Fig. 6 BiFC analysis of NECAP-1 and the putative AP2M cargos discovered by PL-MS.

a, rBiFC assay of NECAP-1 with different AP-1 and AP-2 subunits. Scale bars, 50 µm. b, Cytoscape model summarizing the interactions between various subunits and NECAP-1. Edge colours indicate the analysis method. Node colours correspond to the different complexes and protein families, red and blue, for AP-1 and AP-2, respectively. c, Quantification of rBiFC (YFP/RFP) in (a). rBiFC experiments were repeated twice and one representative experiment is shown. n = 15. d, rBIFC assay of AP2M interaction with KNOLLE and FORMIN-LIKE PROTEIN 6 (FH6), observed by PL-MS with AP2M as bait. The SHAGGY-like kinase BIN2 was used as negative control. Whereas AP2M interacts with KNOLLE evenly along the plasma membrane, the interaction between AP2M and FH6 is less intense and concentrated in plasma membrane-associated punctate. AP2M and BIN2 do not visually interact and only background and chlorophyll fluorescence are observed. e, Quantification of rBiFC (YFP/RFP PM intensity ratio) in (d) clearly shows significant differences between AP2M-KNOLLE and AP2M-BIN2. The punctate signal in the AP2M-FH6 combination is not sufficiently strong to yield a statistical difference compared to the control. n, number of cells analysed (c,e). The significant differences (c,e) were determined by one way Brown-Forsythe and Welch ANOVA tests with Dunnett T3 multiple comparisons test. ***P < 0.001; ns, not significant. The bounds of the boxes represent the 25th to 75th percentiles, the center line of the box indicates and the whiskers indicate the median, the minimum and the maximum values, respectively. All individual values were plotted. Scale bar, 50 µm.

Source data

Extended Data Fig. 7 Genotype of the P34-CRISPR lines.

a, Schematic representation of the CRISPR editing on the P34 gene in the p34 CRISPR mutants. Blue, red, and green indicate insertion, nucleotide exchange, and mutated amino acids, respectively. The arrows mark the sites of the guide RNA (gRNA) sequences. b, Protein sequence alignment of P34 (wild type, Col-0) and P34(Δ) by means of the CLC Main Workbench (Qiagen). Hyphen and green letters indicate deletion and mutated amino acids, respectively. Asterisks mark the stop codons.

Extended Data Fig. 8 Phenotype of the P34-CRISPR lines.

a, Rosettes of wild type (Col-0), p34-1(+/-), p34-2(+/-), p34-3(Δ/-), p34-3(Δ/Δ) mutants, and p34-1(-/-) (lines #9 and #12) and p34-3(Δ/-) (lines #4 and #5) mutants complemented with the pP34:gP34-GFP construct grown in the soil for 4 weeks. Scale bar, 20 mm. b, Quantification the rosette leaf area of each genotype show in (a). Three independent experiments were combined, each with 8-9 plants per genotype. ***P ≤ 0.001 (one-way ANOVA test); ns, not significant. The bounds of the boxes represent the 25th to 75th percentiles, the center line of the box and the whiskers indicate the median, the minimum and the maximum values, respectively. All individual values were plotted. c, Aborted seeds in the siliques of genotypes in (b). Arrows indicate the aborted seeds. d, Quantification of the aborted seeds in (c). χ2 values were calculated with the χ2 test. n number of seeds analysed. e, Embryogenesis of the wild type and the p34-2(+/-) mutant. Differential interference contrast (DIC) microscopy of cleared whole-mount seeds at 6, 7 and 14 DAP (days after pollination). The ratio indicates the ratio of observed embryo stage/total embryos. Scale bars, 20 μm. The quantification data are combined from two experiments. Representative images from one experiment are shown. f, Phenotype of 7-day-old seedlings grown on ½MS. Scale bar, 10 mm. g, Primary root length of seedlings shown in (f). All the individual values were plotted and the center line represents the median. Twenty roots per genotype were measured. ***P ≤ 0.001 (one-way ANOVA test).

Source data

Extended Data Fig. 9 CRISPR efficiency and different phenotypes of the p34 mutants.

a, Gene editing efficiency analysis of three random 9-day-old plants of p34iCRISPR-1 and p34iCRISPR-2 after induction with 10 μM β-oestradiol (Est). The sequencing results were analysed with the online software Inference of CRISPR Edits (ICE) (https://ice.synthego.com/#/). b, P34-GFP localization in roots of 5-day-old p35S:gP34-GFP/p34iCRISPR-1 plants grown on DMSO and 10 μM Est. Arrows indicate the remaining P34-GFP signal. Scale bar, 10 µm. c, Protein levels of AP1G, AP2A and AP2S in p34-3 mutants analysed by immunoblotting with α-AP1G, α-AP2S, α-AP2A, α-CHC, α-TPLATE and α-Tubulin, The experiments were repeated three times. One representative experiment is shown. d, Quantification of protein levels shown in (c). The protein level was normalized to tubulin. e, Confocal images of the 5-day-old pP34:gP34-GFP/p34-1(-/-) (line #12) root cells stained with FM4-64 (2 μM, 40 min). Scale bar, 10 µm. The imaging was repeated three times. One representative experiment is shown. f, FM4-64 uptake in the p34-3 mutants. g, Fluorescence intensity ratio of the relative intracellular-to-plasma membrane (PM) FM4-64 signal. All the individual value were plotted and the center line represents the median. ***P ≤ 0.001 (one-way ANOVA test); ns, not significant. The P values versus the Col-0 control for p34(Δ/-) = 0.0004, p34(Δ/Δ) = 0.6980 and ap2m-2 < 0.0001. n = 30, n number of cells analysed, Scale bar, 10 µm.

Source data

Extended Data Fig. 10 Vesicular trafficking pathways affected in the p34 mutants.

a, secRFP localization in roots of 5-day-old Col-0 and p34iCRISPR-1 plants grown on DMSO and 10 μM β-oestradiol (Est). b, Immunofluorescence staining of KNOLLE in the root meristem of Col-0, p34iCRISPR-1 and p34iCRISPR-2 plants treated with 10 μM Est. c, PIN2-GFP localization in the roots of 5-day-old Col-0 and p34iCRISPR-1 plants grown on DMSO and 10 μM Est in the dark. d, Percentage of epidermal cells with GFP signals in the vacuoles as shown in (c), Error bars represent SD. e, Morphology of the lytic vacuoles in root cells of 7-day-old Col-0, p34iCRISPR-1 and p34iCRISPR-2 plants grown on DMSO and 10 μM Est. Images were taken after 2 h of staining with 4 μM FM4-64. Scale bars, 10 µm (a-c,e), The imaging of all genotypes was repeated three times. One representative experiment is shown.

Source data

Supplementary information

Reporting Summary

Supplementary Tables 1–5

Supplementary Table 1. Proteomic analysis of adaptor complex interactome in Arabidopsis cell suspension cultures. Supplementary Table 2. GO analysis of adaptor complexes interactome in Arabidopsis. Supplementary Table 3. Summary of protein–protein interactions tested by rBiFC assay. Supplementary Table 4. Oligonucleotides used in this study. Supplementary Table 5. Accession numbers used for sequence alignment.

Source data

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig./Table 5

Unprocessed western blots.

Source Data Extended Data Fig./Table 5

Statistical source data.

Source Data Extended Data Fig./Table 6

Statistical source data.

Source Data Extended Data Fig./Table 8

Statistical source data.

Source Data Extended Data Fig./Table 9

Unprocessed western blots.

Source Data Extended Data Fig./Table 9

Statistical source data.

Source Data Extended Data Fig./Table 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Siao, W., Zhao, X. et al. Adaptor protein complex interaction map in Arabidopsis identifies P34 as a common stability regulator. Nat. Plants 9, 355–371 (2023). https://doi.org/10.1038/s41477-022-01328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01328-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing