Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH

Abstract

Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained form of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located thioredoxin (Trx)-like and NHL domains. Here we report structural data, genetic modification and biochemical characterization of Arabidopsis SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are associated together, with the cysteine motif located at their interface. Residue E859, required for SOQ1 function, is pivotal for maintaining the Trx–NHL association. Importantly, the C-terminal region of SOQ1 forms an independent β-stranded domain that has structural homology to the N-terminal domain of bacterial disulfide bond protein D and is essential for negative regulation of qH. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighbouring lumenal domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of SOQ1NHL.
Fig. 2: Structures of SOQ1NHL-CTD and SOQ1NHL(E859K)-CTD.
Fig. 3: Structure of SOQ1Trx(mut)-NHL and the interactions between the Trx-like and NHL domains.
Fig. 4: E859 is pivotal for stabilizing the Trx–NHL interface and for the suppression function of SOQ1.
Fig. 5: CTD is required for SOQ1 suppression function.
Fig. 6: Comparison of SOQ1 with DsbD.
Fig. 7: Truncated forms of SOQ1 accumulate in the thylakoid lumen.
Fig. 8: Proposed working model of SOQ1 in suppressing qH.

Similar content being viewed by others

Data availability

Atomic coordinates and crystallographic structure factors have been deposited in the protein data bank under accession codes: 7DJJ (SOQ1NHL), 7DJM (SOQ1NHL-CTD), 7DJK (SOQ1Trx(mut)-NHL) and 7DJL (SOQ1NHL(E859K)-CTD). Source data are provided with this paper. All other data supporting the findings of this study are available from the corresponding authors upon request. Sequence data from this article can be found in the Arabidopsis Genome Initiative (TAIR; https://www.arabidopsis.org/index.jsp) under accession numbers At1g56500 (SOQ1) and At3g47860 (LCNP).

References

  1. Aro, E. M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenerg. 1143, 113–134 (1993).

    Article  CAS  Google Scholar 

  2. Niyogi, K. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 333–359 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Horton, P., Ruban, A. V. & Walters, R. G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Demmig-Adams, B. & Adams III, W. W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 599–626 (1992).

    Article  CAS  Google Scholar 

  5. Nilkens, M. et al. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta Bioenerg. 1797, 466–475 (2010).

    Article  CAS  Google Scholar 

  6. Ware, M. A., Belgio, E. & Ruban, A. V. Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. J. Exp. Bot. 66, 1259–1270 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Horton, P. & Hague, A. Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochim. Biophys. Acta Bioenerg. 932, 107–115 (1988).

    Article  CAS  Google Scholar 

  8. Demmig-Adams, B., Adams, W. & Mattoo, A. Photoprotection, Photoinhibition, Gene Regulation, and Environment Vol. 21 (Springer Science & Business Media, 2006).

  9. Quick, W. P. & Stitt, M. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim. Biochphys. Acta Bioenerg. 977, 287–296 (1989).

    Article  CAS  Google Scholar 

  10. Pinnola, A. & Bassi, R. Molecular mechanisms involved in plant photoprotection. Biochem. Soc. Trans. 46, 467–482 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Li, X. P., Phippard, A., Pasari, J. & Niyogi, K. K. Structure–function analysis of photosystem II subunit S (PsbS) in vivo. Funct. Plant Biol. 29, 1131–1139 (2002).

    Article  PubMed  Google Scholar 

  12. Jahns, P. & Holzwarth, A. R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta Bioenerg. 1817, 182–193 (2012).

    Article  CAS  Google Scholar 

  13. Li, X. P., Björkman, O., Shih, C., Grossman, A. R. & Niyogi, K. K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Ruban, A. V., Johnson, M. P. & Duffy, C. D. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta Bioenerg. 1817, 167–181 (2012).

    Article  CAS  Google Scholar 

  15. Dall’Osto, L., Caffarri, S. & Bassi, R. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17, 1217–1232 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shapiguzov, A. et al. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc. Natl Acad. Sci. USA 107, 4782–4787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pribil, M. et al. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol. 8, e1000288 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Rochaix, J. D., Lemeille, S., Shapiguzov, A., Samol, I. & Goldschmidt-Clermont, M. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Philos. Trans. R. Soc. Lond. 367, 3466–3474 (2012).

    Article  CAS  Google Scholar 

  19. Bellafiore, S., Barneche, F., Peltier, G. & Rochaix, J. D. State transitions and light adaptation require chloroplast thylakoid protein kinase. Nature 433, 7892–7895 (2005).

    Article  CAS  Google Scholar 

  20. Bru, P., Nanda, S. & Malnoë, A. A genetic screen to identify new molecular players involved in photoprotection qH in Arabidopsis thaliana. Plants 9, 1565 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  21. Malnoë, A. Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environ. Exp. Bot. 154, 123–133 (2018).

    Article  CAS  Google Scholar 

  22. Malnoë, A. et al. The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. Plant Cell 30, 196–208 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Brooks, M. D., Sylak-Glassman, E. J., Fleming, G. R. & Niyogi, K. K. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc. Natl Acad. Sci. USA 110, E2733–E2740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bru, P. et al. An energy-dissipative state of the major antenna complex of plants. Preprint at bioRxiv https://doi.org/10.1101/2021.07.09.450705 (2021).

  25. Amstutz, C. L. et al. An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nat. Plants 6, 154–166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slack, F. J. & Ruvkun, G. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem. Sci. 23, 474–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Perez-Perez, M. E. et al. The deep thioredoxome in Chlamydomonas reinhardtii: new insights into redox regulation. Mol. Plant 10, 1107–1125 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Geigenberger, P., Thormahlen, I., Daloso, D. M. & Fernie, A. R. The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci. 22, 249–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Biterova, E., Ignatyev, A., Uusimaa, J., Hinttala, R. & Ruddock, L. W. Structural analysis of human NHLRC2, mutations of which are associated with FINCA disease. PLoS ONE 13, e0202391 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Uusimaa, J. et al. NHLRC2 variants identified in patients with fibrosis, neurodegeneration, and cerebral angiomatosis (FINCA): characterisation of a novel cerebropulmonary disease. Acta Neuropathol. 135, 727–742 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Polkoff, K. CRISPR/Cas9 Mediated Gene Editing for the Improvement of Beef and Dairy Cattle. MSc thesis, Univ. of Illinois Urbana-Champaign (2017).

  32. Long, J., Pan, G., Emmanuel, I., Robert, B. & Li, X. Discovery of novel biomarkers for Alzheimer’s disease from blood. Dis. Markers 2016, 4250480 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nishi, K. et al. ROS-induced cleavage of NHLRC2 by caspase-8 leads to apoptotic cell death in the HCT116 human colon cancer cell line. Cell Death Dis. 8, 3218 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Slabinski, L. et al. XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23, 3403–3405 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, C. K., Chan, N. L. & Wang, A. H. The many blades of the β-propeller proteins: conserved but versatile. Trends Biochem. Sci. 36, 553–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Jennifer, L. M. Thioredoxin—a fold for all reasons. Structure 3, 245–250 (1995).

    Article  Google Scholar 

  37. Zhang, K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat. Commun. 10, 5511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan, X. et al. Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Nat. Commun. 10, 2386 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holm, L. DALI and the persistence of protein shape. Protein Sci. 29, 128–140 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Arts, I. S., Gennaris, A. & Collet, J. F. Reducing systems protecting the bacterial cell envelope from oxidative damage. FEBS Lett. 589, 1559–1568 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, R. P. et al. Structural and biochemical insights into the disulfide reductase mechanism of DsbD, an essential enzyme for neisserial pathogens. J. Biol. Chem. 293, 16559–16571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rozhkova, A. et al. Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD. EMBO J. 23, 1709–1719 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mavridou, D. A. I. et al. Oxidation state-dependent protein–protein interactions in disulfide cascades. J. Biol. Chem. 286, 24943–24956 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Entus, R., Poling, M. & Herrmann, K. M. Redox regulation of Arabidopsis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. Plant Physiol. 129, 1866–1871 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Collet, J. F., Riemer, J., Bader, M. W. & Bardwell, J. C. A. Reconstitution of a disulfide isomerization system. J. Biol. Chem. 277, 26886–26892 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Page, M. L. D. et al. A homolog of prokaryotic thiol disulfide transporter CcdA is required for the assembly of the cytochrome b6f complex in Arabidopsis chloroplasts. J. Biol. Chem. 279, 32474–32482 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Katzen, F., Deshmukh, M., Daldal, F. & Beckwith, J. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J. 21, 3960–3969 (2002) .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Motohashi, K. & Hisabori, T. CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid. Redox Signal. 13, 1169–1176 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Kang, Z. H. & Wang, G. X. Redox regulation in the thylakoid lumen. J. Plant Physiol. 192, 28–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Henri, P. & Rumeau, D. Ectopic expression of human apolipoprotein D in Arabidopsis plants lacking chloroplastic lipocalin partially rescues sensitivity to drought and oxidative stress. Plant Physiol. Biochem. 158, 265–274 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Brooks, M. D. A Suppressor of Quenching Regulates Photosynthetic Light Harvesting. PhD thesis, Univ. of California, Berkeley (2012).

  53. D’Arcy, A., Terese, B., Cowan-Jacob, S. W. & Marsh, M. Microseed matrix screening for optimization in protein crystallization: what have we learned? Acta Crystallogr. F 70, 1117–1126 (2014).

    Article  CAS  Google Scholar 

  54. Wang, Q.-S. et al. Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nucl. Sci. Tech. 29, 68 (2018).

    Article  Google Scholar 

  55. Zhang, W.-Z. et al. The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility. Nucl. Sci. Tech. 30, 170 (2019).

    Article  CAS  Google Scholar 

  56. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. 67, 355–367 (2011).

    CAS  Google Scholar 

  62. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, Z.-L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. MacKerell, A. D. Jr et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Fan, H. et al. A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nat. Commun. 12, 7257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  70. Wu, C. L., Huang, X. J., Cheng, J., Zhu, D. J. & Zhang, X. Z. High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. J. Struct. Biol. 208, 107396 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Grefen, C., Donald, N., Hashimoto, K., Jörg, K. & Blatt, M. R. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 64, 355–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Kieselbach, T., Hagman, Å., Andersson, B. & Schröder, W. P. The thylakoid lumen of chloroplasts. Isolation and characterization. J. Biol. Chem. 273, 6710–6716 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Levesque-Tremblay, G., Havaux, M. & Ouellet, F. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 60, 691–702 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Brooks for providing the SOQ1 expression vector and for critical discussion together with A. Hertle and K. Niyogi. We thank W. Schröder for help with lumen preparation and A. Johansson for assistance with Arabidopsis transformants characterization. We thank Y. Gao for assistance in plasmid construction and protein expression. We thank F. Sun for advice in cryo-EM sample preparation, and X. C. Zhang and L. He for discussion. We are grateful to the staff at the Shanghai Synchrotron Radiation Facility (Shanghai, China) for technical support during diffraction data collection. We thank Y. Wu from the Institute of Microbiology State Key Laboratory of Plant Genomics, CAS and Y. Chen from IBP for the MST experiment; L. Niu, X. Ding and M. Zhang from IBP, CAS for mass spectrometry. Cryo-EM work was performed at the Center for Biological Imaging (CBI, http://cbi.ibp.ac.cn), IBP, CAS. We thank B. Zhu and L. H. Cheng from CBI for their help with the cryo-EM data collection. The project was funded by the National Key R&D Program of China (2016YFA0502900 and 2017YFA0503702), the Strategic Priority Research Program of CAS (XDB27020106) and National Natural Science Foundation of China (31600609 and 31770778). X.P. is sponsored by the Youth Innovation Promotion Association at the Chinese Academy of Sciences (2018128). A.M. was supported by European Commission Marie Skłodowska-Curie Actions Individual Fellowship Reintegration Panel (845687). This research (J.H. and A.M.) was supported by grants to UPSC from the Knut and Alice Wallenberg Foundation (2016.0341 and 2016.0352), the Swedish Governmental Agency for Innovation Systems (2016-00504), by a starting grant to A.M. from the Swedish Research Council Vetenskapsrådet (2018-04150) and by a consortium grant from the Swedish Foundation for Strategic Research (ARC19-0051).

Author information

Authors and Affiliations

Authors

Contributions

X.P., W.C., A.M. and M.L. designed the research. G.Y., X.P. and J.H. performed the research with assistance from L.S. and Y.X. Y.Z. and J.L. performed the MD simulations, J.W. and F.Y. analysed the cross-linking data and H.F. and G.Y. performed the cryo-EM experiment. All of the authors analysed and discussed the data, and G.Y., J.H., X.P., A.M. and M.L. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to Alizée Malnoë or Mei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Plants thanks Patrice Hamel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Constructs of SOQ1 used in the present study.

(A) Domain structure of SOQ1. SOQ1 contains chloroplast transit peptide (cTP; green), HAD domain (yellow), transmembrane region (TM; blue), Trx-like domain (cyan) containing the CCINC motif, NHL domain (bright orange) and CTD (hot pink). Numbers indicate amino acid positions. (B) Constructs of SOQ1 truncations used for crystallization, crosslinking and cryo-EM. The region built in each crystal structure is shown below its corresponding construct (framed in one rectangular box). Mutated residues are indicated. (C) Construct of SOQ1 truncations used for plant transformant lines. (D) Constructs of SOQ1 truncations for microscale thermophoresis (MST) experiment. (E) Constructs of SOQ1 truncations used as controls for heterogeneous degradation.

Extended Data Fig. 2 The structures of NHL domain and CTD.

(A) The interaction between Blade 1 and the C-terminal tail of Blade 6 in NHL domain. The hydrogen bonds are formed between R590, G598, S606, S607 from N-ter of blade 1 (blue) and K900, Q903, P904,T906 from C-ter of blade 6 (red), and are shown by the black dotted lines. The residues involved in hydrogen bond interactions are shown in stick mode. (B) Structural superposition of NHL domain from SOQ1NHL (marine), SOQ1NHL-CTD (pink), SOQ1NHL(E859K)-CTD (cyan) and SOQ1Trx(mut)-NHL (yellow). The N-terminal helix (N-ter) as a part of TN-loop points upwards to link with the Trx-like domain in SOQ1Trx(mut)-NHL structure. (C) Structural superposition of CTD from SOQ1NHL-CTD (pink) and SOQ1NHL(E859K)-CTD (cyan). Two Cys residues C1006 and C1012 are shown as stick mode, and the distance (Å) between them is indicated.

Extended Data Fig. 3 Identification of the position of CTD in the SOQ1NHL-CTD structure.

(A) The seven symmetrically-related CTDs around one NHL domain in SOQ1NHL-CTD crystal. The NHL domain is shown in yellow. The CTD built in SOQ1NHL-CTD structure is shown in hot pink, and the other six symmetrically-related CTDs are shown in pink (the six symmetrically-related NHLs are omitted for clarity). The last traced residue (P907) in NHL domain and the first traced residue (T923) in CTDs are shown in stick-and-ball mode, and the distances (Å) between these two residues are indicated. (B) The scheme of BS3 crosslinked Lys pair. The BS3 is able to crosslink two Lys residues with the distance between their Cα atoms of approximately 24 Å. (C) The distances of cross-linked Lys pairs (K666/K678 from the NHL domain and K924/K927 from the seven CTDs).

Extended Data Fig. 4 Structural comparison of SOQ1Trx(mut)-NHL with reduced NHLRC2.

Superposition of SOQ1Trx(mut)-NHL (pink) and NHLRC2 (gray). Residue E859, R478, Y429, C431S and C434S in SOQ1Trx(mut)-NHL and the corresponding residues E533, R138, Y88, C90 and C93 in NHLRC2 are shown as sticks. The hydrogen bonds formed by E533 with Y88 and R138 are shown as black dashed lines and the distance (Å) is labeled. The distance (Å) between C431S and C434S is labeled. NHLRC2 shows two additional helices at the N-terminal region compared with SOQ1Trx(mut)-NHL. This corresponding fragment is present in SOQ1 sequence, but was not included in SOQ1Trx(mut)-NHL construct.

Extended Data Fig. 5 Structural model of SOQ1 lumenal domains formed by superposing SOQ1Trx(mut)-NHL and SOQ1NHL-CTD structures, aligned on their NHL domain.

The Trx-like domain, NHL domain and CTD are colored in cyan, bright orange and hot pink, respectively. The black dashed circle highlights the region where Trx-like domain overlaps with CTD. The four cross-linked Lys pairs with distances longer than 24 Å are indicated. The red arrow suggests the moving direction of the CTD region containing K952 and K957.

Extended Data Fig. 6 Cryo-EM analysis of SOQ1-LD(M).

(A) The representative cryo-EM micrographs of SOQ1-LD(M). Scale bar, 10 nm. (B) The representative of 2D class averages. (C) Plots showing the Euler angle distribution of the particles. (D) Different view of Cryo-EM reconstruction of SOQ1-LD(M). (E-F) Side (E) and top (F) view of the fitting of SOQ1Trx(mut)-NHL (cyan) and SOQ1NHL-CTD (magenta) crystal structures into the cryo-EM map. The red dotted circle in (D-F) indicates the density which may correspond to the CTD, but could not be fitted with the entire CTD, suggesting that CTD is mobile and partially occupies this area.

Extended Data Fig. 7 ΔCTD accumulation, localization and topology.

(A) ΔCTD localization in chloroplast sub-fractions (Thy: thylakoid, TM: thylakoid membrane after separating lumen, Lumen) in low light (LL) and after 6 h cold and high light treatment (cold HL). Samples were loaded at the same protein amount (3 µg proteins). Proteins were separated by SDS-PAGE and analyzed by immunodetection with antibodies against FLAG, PC, Lhcb4 or ATPb. ATPb is shown as loading control. Representative immunoblot from two independent biological experiments is shown. (B) ΔCTD localization and accumulation compared to wild type (Col-0) in low light (LL) and after 6 h cold and high light treatment (cold HL). Samples were loaded at the same protein amount (3 µg proteins). Proteins were separated by SDS-PAGE and analyzed by immunodetection with anti-SOQ1Trx. Star symbol (*) represents nonspecific band detected by the anti-Trx antibody, based on its absence in soq1-1 lumen samples. Representative immunoblot from three independent biological experiments is shown. (C) The topology of ΔCTD (3 µg chlorophyll) in ΔCTD T2-1, analyzed by immunodetection with anti-FLAG antibody. Protease protection assay on thylakoids treated with thermolysin (Th) in the presence or absence of Triton X-100 (Tr). The stroma-exposed PSI subunit D (PsaD) and the lumenal LCNP are shown as controls. Representative immunoblot from two independent biological experiments is shown. (D) Photosynthetic parameters Fo, Fm, Fv/Fm of Col-0, soq1-1 and three individual T2 ΔCTD lines at time 0 of the NPQ kinetics shown in Fig. 5c. Data represent means ± SD (n = 4 individuals).

Source data

Extended Data Fig. 8 The accumulation of SOQ1 and its truncated forms is similar in stress and non-stress conditions.

The relative quantities of SOQ1 in different fractionated thylakoid membrane preparations (A) and its truncated forms in the lumen (B). The quantities of SOQ1 in cold and high light (HL) were identified as a relative content to low light (LL). The sample was prepared using Yeda press (black dots) or sonication (blue dots) methods respectively. Thylakoid (Thy), membrane (Mb), and lumen samples (full-length and truncated forms) isolated from Col-0 were loaded at the same amount of total protein. Data represent means ± SD (n = 7 independent biological experiments (n = 6 for CTD quantification)).

Source data

Extended Data Table 1 Data collection and refinement statistics
Extended Data Table 2 BS3 cross-linking results of SOQ1-LD and SOQ1-LD(E859K)

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and additional Supplementary Fig. 1 (source data for Supplementary Fig. 2).

Reporting Summary

Supplementary Video 1

Molecular dynamics (MD) results of SOQ1Trx-NHL wild type.

Supplementary Video 2

Molecular dynamics (MD) results of SOQ1Trx-NHL(E859K).

Supplementary Data 1

Primer list for constructions and mutants.

Source data

Source Data Fig. 4c

Uncropped blots for Fig. 4c.

Source Data Fig. 5a,b

Uncropped blots for Fig. 5a,b.

Source Data Fig. 6F

Statistical source data for Fig. 6f: four times repeats of MST.

Source Data Fig. 7

Uncropped blots for Fig. 7.

Source Data Extended Data Fig. 7

Uncropped blots for Extended Data Fig. 7.

Source Data Extended Data Fig. 8

Statistical source data for Extended Data Fig. 8: seven repeats of truncated SOQ1 quantification.

Source Data Extended Data Table 2

Statistical source data for Extended Data Table 2: data of BS3 cross-linking results of SOQ1-LD and SOQ1-LD(E859K).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Hao, J., Pan, X. et al. Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. Nat. Plants 8, 840–855 (2022). https://doi.org/10.1038/s41477-022-01177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01177-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing