Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis

Abstract

Photosynthetic organisms experience wide fluctuations in light intensity and regulate light harvesting accordingly to prevent damage from excess energy. The antenna quenching component qH is a sustained form of energy dissipation that protects the photosynthetic apparatus under stress conditions. This photoprotective mechanism requires the plastid lipocalin LCNP and is prevented by SUPPRESSOR OF QUENCHING1 (SOQ1) under non-stress conditions. However, the molecular mechanism of qH relaxation has yet to be resolved. Here, we isolated and characterized RELAXATION OF QH1 (ROQH1), an atypical short-chain dehydrogenase–reductase that functions as a qH-relaxation factor in Arabidopsis. The ROQH1 gene belongs to the GreenCut2 inventory specific to photosynthetic organisms, and the ROQH1 protein localizes to the chloroplast stroma lamellae membrane. After a cold and high-light treatment, qH does not relax in roqh1 mutants and qH does not occur in leaves overexpressing ROQH1. When the soq1 and roqh1 mutations are combined, qH can neither be prevented nor relaxed and soq1 roqh1 displays constitutive qH and light-limited growth. We propose that LCNP and ROQH1 perform dosage-dependent, antagonistic functions to protect the photosynthetic apparatus and maintain light-harvesting efficiency in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic screen uncovered mutants with constitutively quenched fluorescence.
Fig. 2: Schematic representation of ROQH1 protein and accumulation in roqh1 mutants.
Fig. 3: Constitutive quenching is due to the combination of soq1 and roqh1 mutations.
Fig. 4: Constitutively quenched mutants are light-limited.
Fig. 5: Constitutive quenching requires the peripheral antenna of PSII and LCNP.
Fig. 6: Overexpression of ROQH1 prevents qH from occurring.
Fig. 7: ROQH1 is required for relaxation of qH.
Fig. 8: ROQH1 functions in a complex after cold and high light.

Similar content being viewed by others

Data availability

Source data for Figs. 2, 6 and 8 and Extended Data Figs. 1 and 2 are provided with the paper. Sequence data from this article can be found in the Arabidopsis Genome Initiative under accession numbers At1g44446 (CAO; https://www.arabidopsis.org/servlets/TairObject?id=226583&type=locus), At1g44575 (PsbS; https://www.arabidopsis.org/servlets/TairObject?id=226577&type=locus), At1g56500 (SOQ1; https://www.arabidopsis.org/servlets/TairObject?id=27293&type=locus), At3g47860 (LCNP; https://www.arabidopsis.org/servlets/TairObject?id=40152&type=locus) and At4g31530 (ROQH1; https://www.arabidopsis.org/servlets/TairObject?type=locus&id=128060).

References

  1. Niyogi, K. K. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 333–359 (1999).

    CAS  PubMed  Google Scholar 

  2. Demmig-Adams, B. & Adams, W. W. III. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 599–626 (1992).

    CAS  Google Scholar 

  3. Walters, R. G. & Horton, P. Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth. Res. 27, 121–133 (1991).

    CAS  PubMed  Google Scholar 

  4. Malnoë, A. Photoinhibition or photoprotection of photosynthesis, which one is it? Update on newly termed sustained quenching component, qH. Environ. Exp. Bot. 154, 123–133 (2018).

    Google Scholar 

  5. Li, X.-P. et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22866–22874 (2004).

    CAS  PubMed  Google Scholar 

  6. Hager, A. Light dependent decrease of the pH-value in a chloroplast compartment causing the enzymatic interconversion of violaxanthin to zeaxanthin; relations to photophosphorylation. Planta 89, 224–243 (1969).

    CAS  PubMed  Google Scholar 

  7. Yamamoto, H. Y., Kamite, L. & Wang, Y.-Y. An ascorbate-induced absorbance change in chloroplasts from violaxanthin de-epoxidation. Plant Physiol. 49, 224–228 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Demmig, B., Winter, K., Krüger, A. & Czygan, F.-C. Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 84, 218–224 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Niyogi, K. K., Grossman, A. R. & Björkman, O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 1121–1134 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Havaux, M., Bonfils, J.-P., Lütz, C. & Niyogi, K. K. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol. 124, 273–284 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dall’Osto, L., Caffarri, S. & Bassi, R. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17, 1217–1232 (2005).

    PubMed  PubMed Central  Google Scholar 

  12. Betterle, N., Ballottari, M., Hienerwadel, R., Dall’Osto, L. & Bassi, R. Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Arch. Biochem. Biophys. 504, 67–77 (2010).

    CAS  PubMed  Google Scholar 

  13. Nilkens, M. et al. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta 1797, 466–475 (2010).

    CAS  PubMed  Google Scholar 

  14. Krause, G. H. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Bot. Rev. 74, 566–574 (1988).

    CAS  Google Scholar 

  15. Demmig, B. & Björkman, O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171, 171–184 (1987).

    CAS  PubMed  Google Scholar 

  16. Brooks, M. D., Sylak-Glassman, E. J., Fleming, G. R. & Niyogi, K. K. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc. Natl Acad. Sci. USA 110, E2733–E2740 (2013).

    CAS  PubMed  Google Scholar 

  17. Malnoë, A. et al. The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. Plant Cell 30, 196–208 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Levesque-Tremblay, G., Havaux, M. & Ouellet, F. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 60, 691–702 (2009).

    CAS  PubMed  Google Scholar 

  19. Grzyb, J., Latowski, D. & Strzalka, K. Lipocalins – a family portrait. J. Plant Physiol. 163, 895–915 (2006).

    CAS  PubMed  Google Scholar 

  20. Emanuelsson, O., Nielsen, H., Brunak, S. & Von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000).

    CAS  PubMed  Google Scholar 

  21. Tomizioli, M. et al. Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell. Proteomics 13, 2147–2167 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwacke, R. et al. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131, 16–26 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886 (2014).

    CAS  PubMed  Google Scholar 

  24. Espineda, C. E., Linford, A. S., Devine, D. & Brusslan, J. A. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 96, 10507–10511 (1999).

    CAS  PubMed  Google Scholar 

  25. Kim, E.-H. et al. The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: a study using two chlorophyll b-less mutants. Biochim. Biophys. Acta 1787, 973–984 (2009).

    CAS  PubMed  Google Scholar 

  26. Pagliano, C., Barera, S., Chimirri, F., Saracco, G. & Barber, J. Comparison of the α and β isomeric forms of the detergent n-dodecyl-d-maltoside for solubilizing photosynthetic complexes from pea thylakoid membranes. Biochim. Biophys. Acta 1817, 1506–1515 (2012).

    CAS  PubMed  Google Scholar 

  27. Björkman, O. in Physiological Plant Ecology I. Responses to the Physical Environment (eds Lange, O. L. et al.) 57–108 (Springer–Verlag, 1981).

  28. Lichtenthaler, H. K. et al. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth. Res. 2, 115–141 (1981).

    CAS  PubMed  Google Scholar 

  29. Eskins, K., Duysen, M. E. & Olson, L. Pigment analysis of chloroplast pigment–protein complexes in wheat. Plant Physiol. 71, 777–779 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bailey, S., Walters, R. G., Jansson, S. & Horton, P. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213, 794–801 (2001).

    CAS  PubMed  Google Scholar 

  31. Bielczynski, L. W., Schansker, G. & Croce, R. Effect of light acclimation on the organization of photosystem II super- and sub-complexes in Arabidopsis thaliana. Front. Plant Sci. 7, 105 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Anderson, J. M., Chow, W. S. & De Las Rivas, J. Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma. Photosynth. Res. 98, 575–587 (2008).

    CAS  PubMed  Google Scholar 

  33. Pribil, M., Labs, M. & Leister, D. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 65, 1955–1972 (2014).

    CAS  PubMed  Google Scholar 

  34. Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta 1706, 12–39 (2005).

    CAS  PubMed  Google Scholar 

  35. Anderson, J. M., Horton, P., Kim, E.-H. & Chow, W. S. Towards elucidation of dynamic structural changes of plant thylakoid architecture. Phil. Trans. R. Soc. B 367, 3515–3524 (2012).

    CAS  PubMed  Google Scholar 

  36. Casal, J. J. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64, 403–427 (2013).

    CAS  PubMed  Google Scholar 

  37. Keller, M. M. et al. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 67, 195–207 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fey, V. et al. Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J. Biol. Chem. 280, 5318–5328 (2005).

    CAS  PubMed  Google Scholar 

  39. Pfalz, J. et al. Environmental control of plant nuclear gene expression by chloroplast redox signals. Front. Plant Sci. 3, 257 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Walters, R. G., Rogers, J. J. M., Shephard, F. & Horton, P. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta 209, 517–527 (1999).

    CAS  PubMed  Google Scholar 

  41. Dall’Osto, L., Ünlü, C., Cazzaniga, S. & Van Amerongen, H. Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II. Biochim. Biophys. Acta 1837, 1981–1988 (2014).

    PubMed  Google Scholar 

  42. Naranjo, B. et al. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant. Cell Environ. 39, 804–822 (2016).

    CAS  PubMed  Google Scholar 

  43. Oppermann, U. C. T., Filling, C. & Jörnvall, H. Forms and functions of human SDR enzymes. Chem. Biol. Interact. 130–132, 699–705 (2001).

    PubMed  Google Scholar 

  44. Kavanagh, K. L., Jörnvall, H., Persson, B. & Oppermann, U. The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell. Mol. Life Sci. 65, 3895–3906 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Moummou, H., Kallberg, Y., Tonfack, L. B., Persson, B. & Van Der Rest, B. The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. BMC Plant Biol. 12, 219–236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buysschaert, G., Verstraete, K., Savvides, S. N. & Vergauwen, B. Structural and biochemical characterization of an atypical short-chain dehydrogenase/reductase reveals an unusual cofactor preference. FEBS J. 280, 1358–1370 (2013).

    CAS  PubMed  Google Scholar 

  47. Bollenbach, T. J. & Stern, D. B. Divalent metal-dependent catalysis and cleavage specificity of CSP41, a chloroplast endoribonuclease belonging to the short chain dehydrogenase/ reductase superfamily. Nucleic Acids Res. 31, 4317–4325 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Link, S., Engelmann, K., Meierhoff, K. & Westhoff, P. The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis. Plant Physiol. 160, 2202–2218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lamb, H. K. et al. The negative transcriptional regulator NmrA discriminates between oxidized and reduced dinucleotides. J. Biol. Chem. 278, 32107–32114 (2003).

    CAS  PubMed  Google Scholar 

  50. Andrianopoulos, A., Kourambas, S., Sharp, J. A., Davis, M. A. & Hynes, M. J. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J. Bacteriol. 180, 1973–1977 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Karpowicz, S. J., Prochnik, S. E., Grossman, A. R. & Merchant, S. S. The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J. Biol. Chem. 286, 21427–21439 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fristedt, R. Chloroplast function revealed through analysis of GreenCut2 genes. J. Exp. Bot. 68, 2111–2120 (2017).

    CAS  PubMed  Google Scholar 

  53. Kallberg, Y., Oppermann, U., Jörnvall, H. & Persson, B. Short-chain dehydrogenases/reductases (SDRs). Coenzyme-based functional assignments in completed genomes. Eur. J. Biochem. 269, 4409–4417 (2002).

    CAS  PubMed  Google Scholar 

  54. Ermakova-Gerdes, S. & Vermaas, W. Inactivation of the open reading frame slr0399 in Synechocystis sp. PCC 6803 functionally complements mutations near the QA niche of photosystem II. J. Biol. Chem. 274, 30540–30549 (1999).

    CAS  PubMed  Google Scholar 

  55. Knoppová, J. et al. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell 26, 1200–1212 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Staleva, H. et al. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11, 287–292 (2015).

    CAS  PubMed  Google Scholar 

  57. Komenda, J. & Sobotka, R. Cyanobacterial high-light-inducible proteins—protectors of chlorophyll–protein synthesis and assembly. Biochim. Biophys. Acta 1857, 288–295 (2016).

    CAS  PubMed  Google Scholar 

  58. Duc, C., Sherstnev, A., Cole, C., Barton, G. J. & Simpson, G. G. Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA. PLoS Genet. 9, e1003867 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Brooks, M. D. A Suppressor of Quenching Regulates Photosynthetic Light Harvesting. PhD thesis, Univ. of California, Berkeley (2012).

  60. Lakshmi, B., Mishra, M., Srinivasan, N. & Archunan, G. Structure-based phylogenetic analysis of the lipocalin superfamily. PLoS ONE 10, e0135507 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Kirilovsky, D. & Kerfeld, C. A. The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim. Biophys. Acta 1817, 158–166 (2012).

    CAS  PubMed  Google Scholar 

  62. Wilson, A. et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl Acad. Sci. USA 105, 12075–12080 (2008).

    CAS  PubMed  Google Scholar 

  63. Boulay, C., Wilson, A., D’Haene, S. & Kirilovsky, D. Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc. Natl Acad. Sci. USA 107, 11620–11625 (2010).

    CAS  PubMed  Google Scholar 

  64. Thurotte, A. et al. The cyanobacterial fluorescence recovery protein has two distinct activities: orange carotenoid protein amino acids involved in FRP interaction. Biochim. Biophys. Acta 1858, 308–317 (2017).

    CAS  Google Scholar 

  65. Sutter, M. et al. Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc. Natl Acad. Sci. USA 110, 10022–10027 (2013).

    CAS  PubMed  Google Scholar 

  66. Rochaix, J.-D. et al. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Phil. Trans. R. Soc. B 367, 3466–3474 (2012).

    CAS  PubMed  Google Scholar 

  67. Bhullar, S. et al. Functional analysis of cauliflower mosaic virus 35S promoter: re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity. Plant Biotechnol. J. 5, 696–708 (2007).

    CAS  PubMed  Google Scholar 

  68. Borello, U., Ceccarelli, E. & Giuliano, G. Constitutive, light-responsive and circadian clock-responsive factors compete for the different I box elements in plant light-regulated promoters. Plant J. 4, 611–619 (1993).

    CAS  PubMed  Google Scholar 

  69. Weigel, D. & Glazebrook, J. Setting up Arabidopsis crosses. Cold Spring Harb. Protoc. 2006, prot4623 (2006).

    Google Scholar 

  70. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

    CAS  PubMed  Google Scholar 

  71. Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W. & Chua, N.-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 1–6 (2006).

    Google Scholar 

  72. Iwai, M. et al. Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens. Nat. Plants 1, 1–7 (2015).

    Google Scholar 

  73. Wittig, I., Braun, H.-P. & Schagger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    CAS  PubMed  Google Scholar 

  74. Müller-Moulé, P., Conklin, P. L. & Niyogi, K. K. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol. 128, 970–977 (2002).

    PubMed  PubMed Central  Google Scholar 

  75. Mcdonald, K. L. Rapid embedding methods into epoxy and LR white resins for morphological and immunological analysis of cryofixed biological specimens. Microsc. Microanal. 20, 152–163 (2014).

    CAS  PubMed  Google Scholar 

  76. Mitra, P. P. & Loqué, D. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J. Vis. Exp. 87, e51381 (2014).

    Google Scholar 

  77. Komenda, J. et al. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in PCC 6803. J. Biol. Chem. 279, 48620–48629 (2004).

    CAS  PubMed  Google Scholar 

  78. Järvi, S., Suorsa, M., Paakkarinen, V. & Aro, E. M. Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochem. J. 439, 207–214 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Ruzin and D. Schichnes from the Biological Imaging Facility and K. McDonald and R. Zalpuri from the Transmission Electron Microscopy Facility at University of California, Berkeley for technical advice and assistance; S. Shahrasbi and S. Lee for assistance with mutant screening and crosses; C. Marshall for advice regarding DNA sequencing; F. Ouellet for providing antibodies against LCNP; M. Iwai for advice regarding BN–PAGE and critical reading of the manuscript; and R. Croce and C. Gee for critical discussions. C.L.A. would like to thank Daniel L. Amstutz, who passed away during the writing of this manuscript, for guidance and support. This research was supported by the Division of Chemical Sciences, Geosciences and Biosciences, the Office of Basic Energy Sciences and the Office of Science, US Department of Energy (Field Work Proposal 449B). This work used the Vincent J. Coates Genomics Sequencing Laboratory at University of California, Berkeley, supported by National Institutes of Health S10 Instrumentation Grants S10RR029668 and S10RR027303. R.F. was supported by the Dutch Organization for Scientific Research via an ECHO grant to R. Croce and by the US Department of Energy Office of Science, Office of Biological and Environmental Research programme under award no. DE-FC02-02ER63421. A.S. was supported by the National Institutes of Health National Research Service Award Trainee appointment (grant no. GM007127). K.K.N. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.L.A., K.K.N. and A.M. designed research; C.L.A. performed research; A.M. performed the genetic screen, crosses and preliminary biophysical and biochemical characterizations; A.S. performed bioinformatics analysis to identify mutated genes; R.F. designed the ROQH1 antibody and performed biochemical fractionation and salt washes experiments. All of the authors analysed and discussed the data, and C.L.A. and A.M. wrote the paper with input from K.K.N., A.S., R.F. and S.S.M.

Corresponding authors

Correspondence to Krishna K. Niyogi or Alizée Malnoë.

Ethics declarations

Competing interests

A.M. and K.K.N. have filed a US patent application (no. 2019 292 556 A1) describing how the overexpression of ROQH1 accelerates relaxation of NPQ (qH). The remaining authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Peter Jahns and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ROQH1 is enriched at the chloroplast stroma lamellae.

Proteins were separated by SDS-PAGE and analyzed by immunodetection with antibodies against ROQH1, Rubisco, Lhca1, Lhcb2. Ponceau is shown as loading control. Molecular masses (kD) are indicated according to the migration of Precision Plus Protein Standards markers from Bio-Rad. Total leaf extract (Leaf) from plants grown under 120 µmol photons m−2 s−1, 21 °C were fractionated into chloroplasts, thylakoids, grana (appressed membranes), grana margins, stroma, and stroma lamellae (non-appressed membranes). Proteins were separated by SDS-PAGE and analyzed by immunodetection with antibodies against ROQH1, Rubisco, Lhca1 or Lhcb2. Ponceau is shown as loading control. Molecular masses (kD) are indicated according to the migration of Precision Plus Protein Standards markers from Bio-Rad. Samples were loaded by equal total chlorophyll content (3 μg). Immunoblot is representative of 5 biologically independent experiments.

Source data

Extended Data Fig. 2 ROQH1 functions in a complex after cold and high light.

Two-dimensional BN/SDS-PAGE analysis from wild-type thylakoids isolated before (-) and after (+) a 5 h cold and high light treatment (6 °C and 1,600 µmol photons m-2 s-1), solubilized with 1% β-DM and immunoblotted with antibodies for Flag, PsaA, D1, and Lhcb2. For an internal loading control, 1 μg total chlorophyll of solubilized soq1 roqh1-1: ROQH1 OE thylakoids was loaded in the control lane. Immunoblots are representative of 2 biologically independent experiments.

Source data

Extended Data Fig. 3 ROQH1 is required to turn off qH.

Under non-stress conditions, SOQ1 inhibits LCNP activity. Under stress conditions, such as cold and high light, SOQ1 inhibition is relieved (grey dashed line) and LCNP is active. Quenching sites indicated by purple color are produced in the peripheral antenna directly mediated by LCNP (solid arrow) or indirectly (dashed arrow) through LCNP modification of LHCII hydrophobic environment. ROQH1 recycle these quenching sites back to light harvesting sites either directly by acting at the antenna (solid line) or indirectly through modification of LHCII hydrophobic environment (dashed line). Adapted from ref. 17. Copyright American Society of Plant Biologists.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–4 and Source Data for Supplementary Figs. 2, 5, 6, 7, 10, 12, 14 and 15.

Reporting Summary

Source data

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 6

Unprocessed western blots.

Source Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amstutz, C.L., Fristedt, R., Schultink, A. et al. An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nat. Plants 6, 154–166 (2020). https://doi.org/10.1038/s41477-020-0591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0591-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing