Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Boosting carbon nanotube transistors through γ-ray irradiation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Boosting carbon nanotube transistors through γ-ray irradiation

  • Ke Zhang1,2 na1,
  • Ningfei Gao3,4 na1,
  • Jiahao Zhang3,
  • Yang Li  ORCID: orcid.org/0000-0002-1180-98635,
  • Jibo Zhao1,
  • Daming Zhou1,
  • Xinhe Wang  ORCID: orcid.org/0000-0002-0027-46721,2,
  • Peng Liu  ORCID: orcid.org/0000-0002-1860-51266,
  • Xiaoyang Lin  ORCID: orcid.org/0000-0002-2062-00501,2,
  • Haitao Xu3,4,7,
  • Lian-Mao Peng  ORCID: orcid.org/0000-0003-0754-074X3,4 &
  • …
  • Weisheng Zhao  ORCID: orcid.org/0000-0001-8088-04041,2 

Nature Communications , Article number:  (2026) Cite this article

  • 1261 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon nanotubes and fullerenes

Abstract

Advanced electronics in the post-Moore era require foundry-level performance enhancements. Carbon nanotube field-effect transistors, compatible with commercial silicon manufacturing, surpass the fundamental performance limits of silicon field-effect transistors. However, interface imperfections between carbon nanotubes and the dielectric cause poor gate controllability and current leakage. This work demonstrates that organic molecules near the carbon nanotubes can be mitigated by high-energy γ-ray irradiation. The treatment reduces off-state current density to 112.2 pA μm−1, approaching the 100 pA μm−1 low-power target, and achieves an on/off ratio of ~105. The quasi-gate-all-around architecture shows radiation tolerance up to 100 Mrad(Si), surpassing traditional silicon-based devices by over two orders of magnitude. This foundry-compatible strategy operates at room temperature with high throughput, advancing the practical application of nanotube transistors.

Similar content being viewed by others

Complementary carbon nanotube metal–oxide–semiconductor field-effect transistors with localized solid-state extension doping

Article 19 October 2023

Scaling aligned carbon nanotube transistors to a sub-10 nm node

Article 17 July 2023

Radiofrequency transistors based on aligned carbon nanotube arrays

Article 21 June 2021

Data availability

The authors declare that data generated in this study are provided in the paper and the Supplementary Information file. Further datasets are available from the corresponding author upon request.

References

  1. Khan, H. N., Hounshell, D. A. & Fuchs, E. R. Science and research policy at the end of Moore’s law. Nat. Electron. 1, 14–21 (2018).

    Google Scholar 

  2. Cao, W. et al. The future transistors. Nature 620, 501–515 (2023).

    Google Scholar 

  3. Li, M.-Y., Su, S.-K., Wong, H.-S. P. & Li, L.-J. How 2D semiconductors could extend Moore’s law. Nature 567, 169–170 (2019).

    Google Scholar 

  4. Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Google Scholar 

  5. Liu, L. et al. Ma Z. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850–856 (2020).

    Google Scholar 

  6. Cheng, X., Pan, Z., Fan, C., Wu, Z., Ding, L. & Peng, L.M. Aligned carbon nanotube–based electronics on glass wafer. Sci. Adv. 10, eadl1636 (2024).

    Google Scholar 

  7. Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369–1372 (2017).

    Google Scholar 

  8. Wang, J. et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 1, 326–331 (2018).

    Google Scholar 

  9. Zhang, S. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543, 234–238 (2017).

    Google Scholar 

  10. Cao, Q. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68–72 (2015).

    Google Scholar 

  11. Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019).

    Google Scholar 

  12. Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    Google Scholar 

  13. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Google Scholar 

  14. Si, J. et al. A carbon-nanotube-based tensor processing unit. Nat. Electron. 7, 684–693 (2024).

    Google Scholar 

  15. Bishop, M. D. et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 3, 492–501 (2020).

    Google Scholar 

  16. Cao, Q. Carbon nanotube transistor technology for More-Moore scaling. Nano Res. 14, 3051–3069 (2021).

    Google Scholar 

  17. Cheng C.-C. et al. Monolithic heterogeneous integration of BEOL power gating transistors of carbon nanotube networks with FEOL Si ring oscillator circuits. In 2019 IEEE International Electron Devices Meeting (IEDM)) (2019).

  18. Pitner G. et al. Building high performance transistors on carbon nanotube channel. In 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2023).

  19. Li, S. et al. High-performance and low parasitic capacitance CNT MOSFET: 1.2 mA/μm at V DS of 0.75 V by self-aligned doping in sub-20 nm spacer. In the 2023 International Electron Devices Meeting (IEDM)(2023).

  20. Zhang, Z. et al. Complementary carbon nanotube metal–oxide–semiconductor field-effect transistors with localized solid-state extension doping. Nat. Electron. 6, 999–1008 (2023).

    Google Scholar 

  21. Han, J., Xu, X. & Zhang, Z. Removing conjugated polymers from aligned carbon nanotube arrays. Small 20, e2309654 (2024).

    Google Scholar 

  22. Han, J., Xu, X. & Zhang, Z. Removal of conjugated polymer on carbon nanotube array by dry process. Carbon 223, 119050 (2024).

  23. Li, J. & Banhart, F. The engineering of hot carbon nanotubes with a focused electron beam. Nano Lett. 4, 1143–1146 (2004).

    Google Scholar 

  24. Banhart, F., Li, J. X. & Krasheninnikov, A. V. Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport. Phys. Rev. B 71, 241408 (2005).

  25. Prinzie, J., Simanjuntak, F. M., Leroux, P. & Prodromakis, T. Low-power electronic technologies for harsh radiation environments. Nat. Electron. 4, 243–253 (2021).

    Google Scholar 

  26. Zhu, M. et al. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 3, 622–629 (2020).

    Google Scholar 

  27. Kanhaiya, P. S. et al. Carbon nanotubes for radiation-tolerant electronics. ACS Nano 15, 17310–17318 (2021).

    Google Scholar 

  28. Zhang, K. et al. Large-scale complementary carbon nanotube integrated circuits for harsh radiation environments. Sci. Adv. 11, eadw0024 (2025).

    Google Scholar 

  29. Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 8, 912–916 (2013).

    Google Scholar 

  30. Zhang, K. et al. Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. Proc. Natl. Acad. Sci. USA 116, 6586–6593 (2019).

    Google Scholar 

  31. Zhong, D. et al. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 1, 40–45 (2017).

    Google Scholar 

  32. Yang, Y., Ding, L., Han, J., Zhang, Z. & Peng, L. M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 11, 4124–4132 (2017).

    Google Scholar 

  33. Wei, N. et al. Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability. Nano Res. 15, 9875–9880 (2022).

    Google Scholar 

  34. Tang, J. et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 1, 191–196 (2018).

    Google Scholar 

  35. Wang, Y. et al. Sub–180-nanometer-thick ultraconformable high-performance carbon nanotube–based dual-gate transistors and differential amplifiers. Sci. Adv. 10, eadq6022 (2024).

    Google Scholar 

  36. Chen, B. et al. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 16, 5120–5128 (2016).

    Google Scholar 

  37. Zhang, Z. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 7, 3603–3607 (2007).

    Google Scholar 

  38. Wang, H. et al. Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proc. Natl. Acad. Sci. USA 111, 4776–4781 (2014).

    Google Scholar 

  39. Lau, C., Srimani, T., Bishop, M. D., Hills, G. & Shulaker, M. M. Tunable n-Type Doping of Carbon Nanotubes through Engineered Atomic Layer Deposition HfO(X) Films. ACS Nano 12, 10924–10931 (2018).

    Google Scholar 

  40. Ha, T. J. et al. Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett. 15, 392–397 (2015).

    Google Scholar 

  41. Tousignant, M. N., Ronnasi, B., Tischler, V., Lessard, B. H. N-Type single walled carbon nanotube thin film transistors using green tri-layer polymer dielectric.Adv. Mater. Interfaces 10, 2370047 (2023).

  42. Zhang, Y. et al. 3D Stackable CNTFET/RRAM 1T1R array with CNT CMOS peripheral circuits as BEOL buffer macro for monolithic 3D integration with analog RRAM-based computing-in-memory. In2023 International Electron Devices Meeting (IEDM)) (2023).

  43. Kanhaiya, P. S., Lau, C., Hills, G., Bishop, M. D. & Shulaker, M. M. Carbon nanotube-based CMOS SRAM: 1 kbit 6 T SRAM arrays and 10 T SRAM cells. IEEE Trans. Electron Dev. 66, 5375–5380 (2019).

    Google Scholar 

  44. Long, G. et al. Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays. Nat. Commun. 13, 6734 (2022).

    Google Scholar 

  45. Chen, H., Cao, Y., Zhang, J. & Zhou, C. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 5, 4097 (2014).

    Google Scholar 

  46. Liu, L. et al. Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano 13, 2526–2535 (2019).

    Google Scholar 

  47. Lv, J., Shen, Z., Meng, D., Peng, L. M. & Qiu, C. High-performance dual-gate transistors based on aligned carbon nanotubes. ACS Appl. Mater Interfaces 16, 58864–58871 (2024).

    Google Scholar 

  48. Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Google Scholar 

  49. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Google Scholar 

  50. Holmes-Siedle A., Adams L. Handbook of Radiation Effects. (Oxford University Press, 2002).

  51. Gaillardin, M. et al. High tolerance to total ionizing dose of Ω-shaped gate field-effect transistors. Appl. Phys. Lett. 88, 223511 (2006).

  52. Colinge, J. P. et al. Radiation dose effects in trigate SOI MOS transistors. IEEE Trans. Nuclear Sci. 53, 3237–3241 (2006).

    Google Scholar 

  53. Draper, B., Okandan, M. & Shaneyfelt, M. Radiation response of a gate-all-around silicon nano-wire transistor. IEEE Trans. Nuclear Sci. 56, 3274–3279 (2009).

    Google Scholar 

  54. El Mamouni, F. et al. Fin-width dependence of ionizing radiation-Induced subthreshold-swing degradation in 100-nm-gate-length finFETs. IEEE Trans. Nuclear Sci. 56, 3250–3255 (2009).

    Google Scholar 

  55. Paillet, P. et al. Total ionizing dose effects on deca-nanometer fully depleted SOI devices. IEEE Trans. Nuclear Sci. 52, 2345–2352 (2005).

    Google Scholar 

  56. Luo, M. et al. Radiation-hard and repairable complementary metal-oxide-semiconductor circuits integrating n-type indium oxide and p-type carbon nanotube field-effect transistors. ACS Appl. Mater Interfaces 12, 49963–49970 (2020).

    Google Scholar 

  57. McMorrow, J. J. et al. Radiation-hard complementary integrated circuits based on semiconducting single-walled carbon nanotubes. ACS Nano 11, 2992–3000 (2017).

    Google Scholar 

  58. Wang, X. et al. Ultralow-power and radiation-tolerant complementary metal-oxide-semiconductor electronics utilizing enhancement-mode carbon nanotube transistors on paper substrates. Adv Mater 34, e2204066 (2022).

    Google Scholar 

  59. Zhao, Y. et al. Radiation effects and radiation hardness solutions for single-walled carbon nanotube-based thin film transistors and logic devices. Carbon 108, 363–371 (2016).

    Google Scholar 

  60. Cress, C. D., McMorrow, J. J., Robinson, J. T., Friedman, A. L., Landi, B. J. Radiation effects in single-walled carbon nanotube thin-film-transistors. IEEE Trans. Nuclear Sci.57, 3040–3045 (2010).

  61. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html.

  62. https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html.

  63. Jiang, K., Li, Q. & Fan, S. Spinning continuous carbon nanotube yarns. Nature 419, 801–801 (2002).

    Google Scholar 

  64. Ma, Z., Han, J., Yao, S., Wang, S. & Peng, L.-M. Improving the performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating. ACS Appl. Mater. Interfaces 11, 11736–11742 (2019).

    Google Scholar 

  65. Ortiz-Conde, A. et al. A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants 52402167(K.Z.), T2394474(W.-S. Z.), T2394470(W.-S.Z.), 62371019(X.-Y.L.), T2394475(X.-Y.L.)), the National Key Research and Development Program of China (grants 2022YFB4400200(W.-S.Z.), and 2024YFA1210601(P.L.)), the Research Start-up Funds of Hangzhou International Innovation Institute of Beihang University (grant 2024KQ052(X.-Y.L.)), the Postdoctoral Fellowship Program of CPSF (grant GZC20233368(K.Z.)), the China Postdoctoral Science Foundation (grants 2024M764084(K.Z.), and 2025T181122(K.Z.)), the Fundamental Research Funds for the Central Universities (JKF-2025001724713(W.-S.Z.)), the Beijing Outstanding Young Scientist Program(W.-S.Z.), and National Key Laboratory of Science and Technology on Vacuum Electronics(P.L. and K.Z.). We thank Prof. Kaili Jiang (Tsinghua University) for proving the suspended CNTs, Wenxin Wang for technical assistance with CNT-films transfer, Xiao Bi for discussions on γ-ray irradiation processes, Jiangtao Wang, Yifan Liu, Xuze Fu, Yuanqi Wei, Guo Chen, and Zi Yuan for discussions on mechanism of irradiation.

Author information

Author notes
  1. These authors contributed equally: Ke Zhang, Ningfei Gao.

Authors and Affiliations

  1. Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, China

    Ke Zhang, Jibo Zhao, Daming Zhou, Xinhe Wang, Xiaoyang Lin & Weisheng Zhao

  2. State Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China

    Ke Zhang, Xinhe Wang, Xiaoyang Lin & Weisheng Zhao

  3. Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, China

    Ningfei Gao, Jiahao Zhang, Haitao Xu & Lian-Mao Peng

  4. Beijing Institute of Carbon-based Integrated Circuits, Beijing, China

    Ningfei Gao, Haitao Xu & Lian-Mao Peng

  5. Beijing Computational Science Research Center, Beijing, China

    Yang Li

  6. State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China

    Peng Liu

  7. Institute of Carbon-based Thin Film Electronics, Peking University, Taiyuan, China

    Haitao Xu

Authors
  1. Ke Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Ningfei Gao
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiahao Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Yang Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Jibo Zhao
    View author publications

    Search author on:PubMed Google Scholar

  6. Daming Zhou
    View author publications

    Search author on:PubMed Google Scholar

  7. Xinhe Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Peng Liu
    View author publications

    Search author on:PubMed Google Scholar

  9. Xiaoyang Lin
    View author publications

    Search author on:PubMed Google Scholar

  10. Haitao Xu
    View author publications

    Search author on:PubMed Google Scholar

  11. Lian-Mao Peng
    View author publications

    Search author on:PubMed Google Scholar

  12. Weisheng Zhao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W.-S.Z. and L.-M.P. supervised the project. K.Z., H.-T.X., X.-Y.L., L.-M.P., and W.-S.Z. proposed the project. K.Z., N.-F.G., and H.-T.X. designed the experiments. N.-F.G. and K.Z. carried out the device fabrication. K.Z. and J.-B.Z. performed the irradiation experiments. K.Z. performed the electrical characterization and materials characterizations (SEM, TEM, AFM, XPS, and Raman). K.Z. growth and manipulation of suspended CNTs. L.-M.P., H.-T.X., K.Z., and Y.L. contributed to the device modeling and data analysis. K.Z., H.T.X., X.-Y.L., and L.-M.P. wrote the manuscript. J.-H.Z., D.-M.Z., P.L., and X.H.W. discussed the results and provided constructive comments on the manuscript.

Corresponding authors

Correspondence to Xiaoyang Lin, Haitao Xu or Lian-Mao Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Daiming Tang and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Gao, N., Zhang, J. et al. Boosting carbon nanotube transistors through γ-ray irradiation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68673-0

Download citation

  • Received: 17 April 2025

  • Accepted: 14 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68673-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing