Abstract
At photonic Dirac points, electromagnetic waves are governed by the same equations as twocomponent massless relativistic fermions. However, photonic Dirac points are known to occur in pairs in “photonic graphene” and other similar photonic crystals, which necessitates special precautions to excite only one valley state. Systems hosting unpaired photonic Dirac points are significantly harder to realize, as they require broken timereversal symmetry. Here, we report on the observation of an unpaired Dirac point in a planar twodimensional photonic crystal. The structure incorporates gyromagnetic materials, which break timereversal symmetry; the unpaired Dirac point occurs when a paritybreaking parameter is finetuned to a topological transition between a photonic Chern insulator and a conventional photonic insulator phase. Evidence for the unpaired Dirac point is provided by transmission and fieldmapping experiments, including a demonstration of strongly nonreciprocal reflection. This unpaired Dirac point may have applications in valley filters and angular selective photonic devices.
Introduction
In a twodimensional (2D) bandstructure, the linear intersection of two bands at a single point in momentum space is called a Dirac point. Near such a point, the Bloch waves are governed by the same Dirac Hamiltonian that describes a twocomponent massless relativistic fermion^{1,2,3}. It is well known that the bandstructure of the 2D material graphene^{1,2,3} possesses Dirac points at the two inequivalent corners of its hexagonal Brillouin zone (BZ), and similar pairs of Dirac points have been realized in optical lattices^{4,5,6} as well as classical acoustic^{7,8,9}, photonic^{10,11,12,13,14,15,16}, and plasmonic^{17,18} structures. In 2D systems preserving timereversal symmetry (T), Dirac points necessarily occur in pairs^{19}. The simultaneous existence of two Dirac cones, or “valleys”, implies that in order to probe features of 2D Dirac particles (e.g., pseudodiffusion^{20}, Klein tunneling^{21,22,23}, and Zitterbewegung^{24,25,26}), special precautions must be taken to ensure that only one valley is ever excited. Depending on the system geometry, this is not always possible, because defects and interfaces can give rise to strong intervalley scattering. The realization of systems hosting unpaired Dirac points would thus open up many interesting new experimental possibilities.
There are three distinct ways in which Dirac points can appear in bandstructures. Dirac points in graphene^{1,2,3} or photonic graphene^{12} belong to the first type, which occur in lattices with unbroken T. These occur in pairs and are stabilized by a symmetry of the underlying lattice. The second type of Dirac point is associated with topologically protected surface states of threedimensional (3D) topological insulators. Weak 3D topological insulators host topologically protected surface states consisting of paired Dirac points^{27}; a photonic version of this has been demonstrated recently^{14}. Strong 3D topological insulators, on the other hand, have topological surface states that form unpaired Dirac points^{16,28,29,30}; this has been observed in condensedmatter systems^{30} but has never been experimentally achieved in a classicalwave system such as a photonic crystal (PhC).
The third type of Dirac point occurs at topological phase transitions between topologically trivial and nontrivial phases with broken T^{31,32}. They correspond to the transition point at which the bulk bandgap closes. This is exemplified theoretically by the Haldane model of a 2D honeycomb lattice, where an unpaired Dirac point appears during a topological transition between the conventional insulator and Chern insulator phases^{32}. Notably, this requires T to be broken at the transition point (the sign of the Tbreaking determines which BZ corner the Dirac point occurs at). Similarly, unpaired Dirac points can also arise in Floquet systems that are driven periodically in time^{31}. Floquet systems have been experimentally simulated using 3D photonic structures of coupled waveguides^{33,34,35,36}, and a single Dirac cone has been demonstrated to exist in the “quasienergy” spectrum (where onaxis momentum plays the role of energy)^{34}. However, many phenomena associated with unpaired Dirac points, such as oneway Klein tunneling^{37}, are challenging to observe in that platform due to small system sizes, lack of frequency selectivity, and other technical limitations. To our knowledge, there is no previous realization of an unpaired Dirac point in the energy (rather than quasienergy) bandstructure of any 2D classicalwave system, corresponding to the closing of a bulk bandgap in a topological phase transition.
Here, we report on the experimental observation of an unpaired photonic Dirac point in a 2D PhC operating at microwave frequencies. Here T symmetry is broken by using gyromagnetic materials biased by an external magnetic field. The PhC is finetuned by varying the orientation of three dielectric scatterers in each unit cell, which controls the magnitude of parity symmetry (P) breaking. At a specific orientation angle, an unpaired Dirac point appears between the second and third transversemagnetic (TM) polarized bands, at a corner of the hexagonal BZ (some of the methods we use to probe the unpaired Dirac point will exploit the fact that it occurs at a nonzero wave vector). The unpaired Dirac point corresponds to the transition point between a Chern insulator phase (with nonzero Chern numbers) and a topologically trivial insulator phase (with zero Chern numbers). This set of features is similar to the theoretical Haldane model in the Tbroken regime (nonzero Haldane flux)^{32,38,39}. Transmission measurements reveal that the closing and reopening of the band gaps occur at the orientation angle predicted by numerical calculations. Using direct field mapping, we show that an unpolarized point source excites Bloch states in a single valley, centered on one of the two inequivalent BZ corners. Finally, we demonstrate the phenomenon of nonreciprocal reflection: microwave beams incident from different directions outside the PhC are selectively reflected, depending on the availability of an unpaired Dirac point within the PhC to couple to. The realization of an unpaired photonic Dirac point in a PhC setting opens up many possibilities for exploring the behavior and applications of 2D Dirac modes, including valley filters^{40} and angular selective devices^{41}.
Results
Design of a 2D PhC with an unpaired Dirac point
The PhC, depicted in Fig. 1a, consists of a 2D triangular lattice with lattice constant a = 17.5 mm. Each unit cell comprises a gyromagnetic cylinder surrounded by three righttriangular dielectric pillars (see Methods for the material parameters). The PhC is placed in an airloaded parallelplate waveguide (see Methods and Supplementary Fig. 1; in the photograph in Fig. 1a, the top plate has been removed for visualization). The orientation of the three dielectric pillars is characterized by an angle θ, which is used to modulate the strength of the inplane Pbreaking^{42}. We study TM modes, which have electric fields polarized along the cylinder axis (defined as the zaxis). For θ = 0° and zero biasing magnetic field, the PhC is P and T symmetric, and its bandstructure contains two Dirac points located at the K and Κ′ points (the corners of the BZ), similar to graphene. Applying a static magnetic field B = 0.4 Tesla along the zaxis breaks T, and hence opens a complete photonic bandgap between the second and the third TM bands, as shown numerically in Fig. 1b. Next, increasing θ widens the bandgap at K while narrowing the bandgap at Κ′. At the specific value θ = 12.9°, the bandgap at Κ′ closes completely to form a Dirac point at 9.01 GHz. Further increasing θ, e.g. to 30°, reopens the bandgap. Figure 1c plots the variation of the bandgap widths at K and Κ′ versus θ, showing the formation of unpaired Dirac points at θ = −12.9° (on K) and θ = 12.9° (on Κ′).
The effective Hamiltonian governing the second and third TM bands near Κ (Κ′) is
where \(\nu _{\mathrm{D}}\) is the group velocity around the Dirac point, \(\delta k_i\) is the momentum deviation from the Κ (Κ′) point, \(\hat \sigma _i\) and \(\hat \tau _i\) are the Pauli matrices operating on orbital and valley subspaces, \(m_{\mathrm{P}}\) and \(m_{\mathrm{T}}\) are the effective mass induced by the breaking of P and T respectively. When \(m_{\mathrm{P}}\) and \(m_{\mathrm{T}}\) are both zero, Eq. (1) reduces to the massless Dirac Hamiltonian. Perturbatively breaking P and/or T generates a bandgap, whose magnitude is proportional to \(\left {m_{\mathrm{P}} + m_{\mathrm{T}}} \right\) at K and \(\left {m_{\mathrm{P}}  m_{\mathrm{T}}} \right\) at Κ′. An unpaired Dirac point forms at K or Κ′ when \(m_{\mathrm{P}} =  m_{\mathrm{T}}\) or \(m_{\mathrm{P}} = m_{\mathrm{T}}\) respectively, which correspond to orientation angles of θ = −12.9° and 12.9° in the actual PhC with a B = 0.4 Tesla applied magnetic field. Besides tuning \(m_{\mathrm{P}}\) by rotating the dielectric pillars, one can also tune \(m_{\mathrm{T}}\) by changing the magnitude of the external magnetic field (see Supplementary Fig. 2a, b for a description of how the effective masses depend on the control parameters). Controlling both the rotation angle and the external magnetic field, a Haldanetype phase diagram is obtained^{32}. Three states with Chern number +1, −1, and 0 appear in the phase diagram. The unpaired Dirac point exists at the boundary between trivial and nontrivial states (Supplementary Figs. 2 and 3).
Gapless bulk state and unpaired Dirac point
We measured the bulk and edge transmissions to characterize the bandgaps and topological properties of the PhC with different orientations of dielectric pillars, with a zoriented static magnetic field of B = 0.4 Tesla. As shown in Fig. 2a, d, g, three different domain walls are constructed between a zigzag aluminum cladding layer (acting as a trivial bandgap material) and the PhC with θ = 0°, 12.9°, and 30°, respectively. We measure the bulk and edge transmissions with a vector network analyzer (Supplementary Fig. 1). The edge transmissions S_{21}/S_{12} are measured when the exciting dipole antenna is placed at Port 1/Port 2, with the detecting dipole antenna at Port 2/Port 1. The bulk transmissions are measured with both source and receiver antennas placed inside the PhC, 18 cm away from each other. Figure 2a, d, g show the simulated field distributions when the point source is at Port 1 at 9.0 GHz, for the three cases.
The measured edge and bulk transmissions are plotted in Fig. 2b,e,h. For θ = 0°, we find that S_{21} is ~30 dB larger than both S_{12}and the bulk transmission in a frequency range around 9.0 GHz. This is consistent with the existence of a topologically nontrivial bulk bandgap with a unidirectional edge state – i.e., a photonic analog of a Chern insulator^{43}. For θ = 12.9°, the edge and bulk transmissions almost overlap, and no distinct gap is observed, indicating that the bulk is gapless; this corresponds to the unpaired Dirac point (the dashed blue curve in Fig. 1b). For θ = 30°, both the edge and bulk transmissions are gapped ~9.0 GHz, indicating that the PhC has a topologically trivial bandgap. These experimental results are further supported by the numerically calculated band diagrams of the domain wall structures, shown in Fig. 2c, f, i. Thus, by choosing the orientation of the triangle pillars in the experimental sample, we are able to precisely access the topological transition of the PhC (between Chern insulator and conventional insulator phases), where the unpaired Dirac point appears.
An important property of this unpaired Dirac point is that it occurs at the Κ′ point, and the bandstructure is gapped at K. Because of this, sources near the Dirac frequency only excite one valley. This is demonstrated by the experimental results shown in Fig. 3a. An unpolarized point source (labeled by a pink star) is placed inside the PhC (θ = 12.9° and B = 0.4 Tesla); the sample configuration is shown schematically in the inset to Fig. 3a. We measure the field patterns outside the PhC, which are caused by the refraction of the PhC’s bulk states into the emptywaveguide region through a zigzag termination. The measured field pattern at 9.05 GHz, along with the corresponding numerically simulated results, are plotted. We observe that a singledirectional beam is refracted out of the PhC into the emptywaveguide region, consistent with the fact that there is only a single valley of bulk states within the PhC. This valley is wavematched to rightmoving outgoing waves, as indicated in Fig. 3b, c. For comparison, we repeat the experiment for θ = 0° and B = 0 Tesla, with the results shown in Fig. 3d–f. In this case, there are two outgoing beams refracted into the emptywaveguide region (the operating frequency for this case, 9.76 GHz, lies near the frequency of the paired Dirac points).
Nonreciprocal reflections
Finally, we show that the unpaired Dirac point enables the phenomenon of nonreciprocal reflection. As shown in Fig. 4a, a diverging beam is incident on the upper boundary of the PhC slab (θ = 12.9° and B = 0.4 Tesla) from the leftupper empty region at 9.05 GHz (close to the Dirac frequency). The measured electric field pattern shows that reflection is suppressed at an angle of α = 39.1°; this is confirmed by numerical simulations (see the left inset of Fig. 4a and Supplementary Fig. 4). This behavior is explained by matching tangential wavevectors along the PhC boundary, as shown in Fig. 4b. The wave with incidence angle α (blue arrow) can couple to the single valley states at Κ′. Because the zigzag interface between the PhC and air preserves the valley degree of freedom^{44}, the beam incident at α undergoes “topologically protected refraction”^{45}, experiencing almost perfect transmission (see simulation in Supplementary Fig. 4). Waves at neighboring incidence angles lie outside the Dirac cone, and are therefore totally reflected. On the other hand, if a beam is incident from the rightupper region, as shown in Fig. 4c, d, strong reflection is observed even at an angle α, as there are no valley states at K to couple into. Such a sharp contrast between left/right transmission (approaching 100% versus 0%) is difficult to been achieved in similar angular selective devices.
Discussion
We have observed the experimental signatures of an unpaired photonic Dirac point in a 2D planar gyromagnetic PhC at microwave frequencies. The unpaired Dirac point occurs at the phase transition between a topologically nontrivial Chern insulator and a topologically trivial photonic insulator, as verified by transmission measurements. We confirm the existence of valley states at one corner of the BZ but not the other by direct field mapping of the microwaves refracting into an empty waveguide, as well as nonreciprocal reflection from the surface of the PhC. This work may provide useful guidelines for constructing unpaired Dirac points^{32} at terahertz^{46} or even optical frequencies^{47}, provided suitable gyromagnetic or gyroelectric materials can be adopted. Moreover, the availability of a practical experimental platform hosting an unpaired Dirac point enables multiple avenues for followup explorations of the properties and uses of photonic Dirac modes. Two exemplary applications can be envisioned. The first is photonic valley filtering^{40}: in contrast to previous timereversalinvariant valley PhCs, which possess two opposite valleys, the current timereversalbroken PhC has a single valley near the unpaired Dirac point, which allows for the filtering of unwanted valley signals in valley photonics. The second is nonreciprocal angular selectivity^{41}: the current PhC is a perfect reflector for almost all incident angles, with an extremely narrow near100% transmission window in a particular direction matching the unpaired Dirac point. This angular selectivity may be used to enhance the performance of nonreciprocal photonic devices.
Methods
Materials
The righttriangular dielectric material used in the experiment is FR4, which has a measured relative permittivity of 4.4 and loss tangent of 0.019. The gyromagnetic material is yttrium iron garnet (YIG), a ferrite with measured relative permittivity 13.0 and dielectric loss tangent 0.0002. Its measured saturation magnetization is M_{s} = 1780 Gauss, with a ferromagnetic resonance linewidth of 35 Oe. Typically, the magnetization will decrease to a negligible value without the presentence of the external magnetic field (Supplementary Fig. 1e). The relative magnetic permeability of the YIG has the form
where \(\mu _{\mathrm{r}} = 1 + \frac{{(\omega _0 + i\alpha \omega )\omega _{\mathrm{m}}}}{{(\omega _0 + i\alpha \omega )^2  \omega ^2}}\), \(\kappa = \frac{{\omega \omega _{\mathrm{m}}}}{{(\omega _0 + i{\mathrm{\alpha }}\omega )^2  \omega ^2}}\), \(\omega _{\mathrm{m}} = {\mathrm{\gamma }}M_{\mathrm{s}}\), \(\omega _0 = {\mathrm{\gamma }}H_0\), H_{0} is the external magnetic field, γ = 1.76×10^{11} s^{−1}T^{−1} is the gyromagnetic ratio, α = 0.0088 is the damping coefficient, and ω is the operating frequency^{48}.
Simulation
The dispersion relations and field patterns are simulated using the finite element software COMSOL Multiphysics. The bandstructures in Fig. 2 and Supplementary Fig. 2d–g are calculated using a supercell that is 20 cells wide, with aluminum walls are modeled as a perfect electric conductor (PEC). Both the dielectric and magnetic losses of the constituent materials are included in the simulation of Figs. 1–4 and Supplementary Fig. 2. Only the real parts of the eigenfrequency analyze are shown in the band dispersions. Since the Dirac frequency (9.01 GHz) of our demonstrate unpaired Dirac point is far away from the resonance frequency (~11.2 GHz) at 0.4 Tesla, the magnetic loss of YIG at the Dirac frequency is relative small (with loss tangent 0.018 and 0.040 for \(\mu _{\mathrm{r}}\) and \(\kappa\), respectively). The decay length of the valley state in the PhC with unpaired Dirac point is simulated to be 26a, far exceeding practical structural dimensions (10a).
Data availability
The data that support the plots within this paper and other findings of this study are available in the Digital Repository of NTU (DRNTU) [https://doi.org/10.21979/N9/BFQBKH] and from the corresponding author upon request.
References
Novoselov, K. S. et al. Twodimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012).
Polini, M., Guinea, F., Lewenstein, M., Manoharan, H. C. & Pellegrini, V. Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nanotechnol. 8, 625–633 (2013).
Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Torrent, D. & SánchezDehesa, J. Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves. Phys. Rev. Lett. 108, 174301 (2012).
Yu, S. Y. et al. Surface phononic graphene. Nat. Mater. 15, 1243–1247 (2016).
Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken timereversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zerorefractiveindex materials. Nat. Mater. 10, 582–586 (2011).
Plotnik, Y. et al. Observation of unconventional edge states in ‘photonic graphene’. Nat. Mater. 13, 57–62 (2014).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Yang, Y. et al. Realization of a threedimensional photonic topological insulator. Nature 565, 622–626 (2019).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Lu, L. et al. Symmetryprotected topological photonic crystal in three dimensions. Nat. Phys. 12, 337–340 (2016).
Han, D., Lai, Y., Zi, J., Zhang, Z. Q. & Chan, C. T. Dirac spectra and edge states in honeycomb plasmonic lattices. Phys. Rev. Lett. 102, 123904 (2009).
Weick, G., Woollacott, C., Barnes, W. L., Hess, O. & Mariani, E. Diraclike plasmons in honeycomb lattices of metallic nanoparticles. Phys. Rev. Lett. 110, 106801 (2013).
Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice:(I). Proof by homotopy theory. Nucl. Phys. B 185, 20–40 (1981).
Zandbergen, S. R. & de Dood, M. J. Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene. Phys. Rev. Lett. 104, 043903 (2010).
Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).
Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337 (2008).
Stander, N., Huard, B. & GoldhaberGordon, D. Evidence for Klein tunneling in graphene p−n junctions. Phys. Rev. Lett. 102, 026807 (2009).
Dreisow, F. et al. Classical simulation of relativistic Zitterbewegung in photonic lattices. Phys. Rev. Lett. 105, 143902 (2010).
Zhang, X. Observing Zitterbewegung for photons near the Dirac point of a twodimensional photonic crystal. Phys. Rev. Lett. 100, 113903 (2008).
Zhang, X. & Liu, Z. Extremal transmission and beating effect of acoustic waves in twodimensional sonic crystals. Phys. Rev. Lett. 101, 264303 (2008).
Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
Zhang, H. et al. Topological insulators in Bi_{2}Se_{3}, Bi_{2}Te_{3} and Sb_{2}Te_{3} with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).
Xia, Y. et al. Observation of a largegap topologicalinsulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).
Chen, Y. L. et al. Experimental realization of a threedimensional topological insulator, Bi_{2}Te_{3}. Science 325, 178–181 (2009).
Leykam, D., Rechtsman, M. C. & Chong, Y. D. Anomalous topological phases and unpaired Dirac cones in photonic Floquet topological insulators. Phys. Rev. Lett. 117, 013902 (2016).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensedmatter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Noh, J. et al. Experimental observation of optical Weyl points and Fermi arclike surface states. Nat. Phys. 13, 611–617 (2017).
Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of photonic anomalous Floquet topological insulators. Nat. Commun. 8, 1–7 (2017).
Mukherjee, S. et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun. 8, 1–7 (2017).
Ni, X. et al. Spinand valleypolarized oneway Klein tunneling in photonic topological insulators. Sci. Adv. 4, eaap8802 (2018).
Leykam, D., Mittal, S., Hafezi, M. & Chong, Y. D. Reconfigurable topological phases in nextnearestneighbor coupled resonator lattices. Phys. Rev. Lett. 121, 023901 (2018).
Mittal, S., Orre, V. V., Leykam, D., Chong, Y. D. & Hafezi, M. Photonic anomalous quantum Hall effect. Phys. Rev. Lett. 123, 043201 (2019).
Rycerz, A., Tworzydło, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).
Shen, Y. et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014).
Ma, T. & Shvets, G. Scatteringfree edge states between heterogeneous photonic topological insulators. Phys. Rev. B 95, 165102 (2017).
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscatteringimmune topological electromagnetic states. Nature 461, 772–775 (2009).
Ma, T. & Shvets, G. AllSi valleyHall photonic topological insulator. New J. Phys. 18, 025012 (2016).
Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).
Wang, D. et al. Photonic Weyl points due to broken timereversal symmetry in magnetized semiconductor. Nat. Phys. 15, 1150–1155 (2019).
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
Pozar, D. M. Microwave Engineering (Wiley, 2012).
Acknowledgements
We are very grateful to S. J. Ren and J. D. Wang from the Southwest Institute of Applied Magnetics (Mianyang, China) for providing the ferrite rods and electromagnet for the microwave experiments. This work was sponsored by the Singapore Ministry of Education under grant numbers MOE2018T21022 (S), MOE2015T22008, MOE2016T31006, and Tier 1 RG174/16 (S), and by National Key Research and Development Program of China under grant number 2016YFB1200100, and by the program of China Scholarships Council under grant number 201806075001, and by the National Natural Science Foundation of China under grant number 11774137.
Author information
Affiliations
Contributions
All authors contributed extensively to this work. G.G.L., P.Z., H.X., and L.B. designed the structure and fabricated the sample. G.G.L. and P.Z. performed the simulation. G.G.L., Y.Y., P.Z., and H.X. designed the experiments. G.G.L., P.Z., and X.R. carried out the experiments. G.G.L., Y.Y., and P.Z. provided major theoretical analysis. G.G.L., H.X.S., and X.L. drew the figures. G.G.L., Y.Y., P.Z., X.L., H.X.S., Y.C., and B.Z. produced the manuscript. B.Z. and Y.C. supervised the project. All authors participated in discussions and reviewed the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, GG., Zhou, P., Yang, Y. et al. Observation of an unpaired photonic Dirac point. Nat Commun 11, 1873 (2020). https://doi.org/10.1038/s4146702015801z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s4146702015801z
Further reading

Recent advances in 2D, 3D and higherorder topological photonics
Light: Science & Applications (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.