Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Testosterone deficiency in male organ transplant recipients

Abstract

Testosterone deficiency is known to affect men with increasing incidence throughout their lifespan. The clinical manifestations of testosterone deficiency, in turn, negatively impact men’s quality of life and perception of overall health. The interaction of chronic systemic disease and androgen deficiency represent an area for potential intervention. Here, we explore the topic of testosterone deficiency amongst men with end-stage organ failure requiring transplantation in order to elucidate the underlying pathophysiology of androgen deficiency of chronic disease and discuss whether intervention, including testosterone replacement and organ transplantation, improve patients’ outcomes and quality of life.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Hypothalamic-pituitary-gonadal (HPG) axis disruption in pre-transplant end-stage organ failure.

References

  1. Dunkel L, Raivio T, Laine J, Holmberg C. Circulating luteinizing hormone receptor inhibitor(s) in boys with chronic renal failure. Kidney Int. 1997;51:777–84.

    Article  CAS  PubMed  Google Scholar 

  2. Vidot H, Kline K, Cheng R, Finegan L, Lin A, Kempler E, et al. The relationship of obesity, nutritional status and muscle wasting in patients assessed for liver transplantation. Nutrients. 2019;11:2097.

    Article  CAS  PubMed Central  Google Scholar 

  3. Jankowska EA, Biel B, Majda J, Szklarska A, Lopuszanska M, Medras M. et al. Anabolic deficiency in men with chronic heart failure: prevalence and detrimental impact on survival. Circulation. 2006;114:1829–37.

    Article  CAS  PubMed  Google Scholar 

  4. Evans M, Fryzek JP, Elinder C-G, Cohen SS, McLaughlin JK, Nyrén O. et al. The natural history of chronic renal failure: results from an unselected, population-based, inception cohort in Sweden. Am J Kidney Dis. 2005;46:863–70.

    Article  PubMed  Google Scholar 

  5. Khurana KK, Navaneethan SD, Arrigain S, Schold JD, Nally JV, Shoskes DA. Serum testosterone levels and mortality in men with CKD stages 3–4. Am J Kidney Dis. 2014;64:367–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao JV, Schooling CM. The role of testosterone in chronic kidney disease and kidney function in men and women: a bi-directional Mendelian randomization study in the UK Biobank. BMC Med. 2020;18:122.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Filler G, Ramsaroop A, Stein R, Grant C, Marants R, So A. et al. Is testosterone detrimental to renal function?. Kidney Int Rep. 2016;1:306–10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Metcalfe PD, Leslie JA, Campbell MT, Meldrum DR, Hile KL, Meldrum KK. Testosterone exacerbates obstructive renal injury by stimulating TNF-α production and increasing proapoptotic and profibrotic signaling. Am J Physiol-Endocrinol Metab. 2008;294:E435–43.

    Article  CAS  PubMed  Google Scholar 

  9. Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV. Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem. 2004;279:52282–92.

    Article  CAS  PubMed  Google Scholar 

  10. Müller V, Losonczy G, Heemann U, Vannay A, Fekete A, Reusz G. et al. Sexual dimorphism in renal ischemia-reperfusion injury in rats: possible role of endothelin. Kidney Int. 2002;62:1364–71.

    Article  PubMed  Google Scholar 

  11. Mahalik JR, Burns SM, Syzdek M. Masculinity and perceived normative health behaviors as predictors of men’s health behaviors. Soc Sci Med. 2007;64:2201–9.

    Article  PubMed  Google Scholar 

  12. Carrero JJ. Testosterone deficiency at the crossroads of cardiometabolic complications in CKD. Am J Kidney Dis. 2014;64:322–5.

    Article  PubMed  Google Scholar 

  13. LeRoith D, Danovitz G, Trestian S, Spitz IM. Dissociation of pituitary glycoprotein response to releasing hormones in chronic renal failure. Acta Endocrinol (Copenh). 1980;93:277–82.

    Article  CAS  Google Scholar 

  14. Grossmann M, Hoermann R, Ng Tang Fui M, Zajac JD, Ierino FL, Roberts MA. Sex steroids levels in chronic kidney disease and kidney transplant recipients: associations with disease severity and prediction of mortality. Clin Endocrinol (Oxf). 2015;82:767–75.

    Article  CAS  Google Scholar 

  15. Prem AR, Punekar SV, Kalpana M, Kelkar AR, Acharya VN. Male reproductive function in uraemia: efficacy of haemodialysis and renal transplantation. Br J Urol. 1996;78:635–8.

    Article  CAS  PubMed  Google Scholar 

  16. Pampa Saico S, Teruel Briones JL, Fernández Lucas M, Delgado Yagüe M, García Cano AM, Liaño García F. Treatment of the testosterone deficiency in hemodialysis patients. Preliminary results. Nefrolía (Engl Ed). 2016;36:462–3.

    Article  Google Scholar 

  17. Chiang JM, Kaysen GA, Segal M, Chertow GM, Delgado C, Johansen KL. Low testosterone is associated with frailty, muscle wasting and physical dysfunction among men receiving hemodialysis: a longitudinal analysis. Nephrol Dial Transpl. 2019;34:802–10.

    Article  CAS  Google Scholar 

  18. Shoskes DA, Kerr H, Askar M, Goldfarb DA, Schold J. Low testosterone at time of transplantation is independently associated with poor patient and graft survival in male renal transplant recipients. J Urol. 2014;192:1168–71.

    Article  CAS  PubMed  Google Scholar 

  19. Reinhardt W, Kübber H, Dolff S, Benson S, Führer D, Tan S. Rapid recovery of hypogonadism in male patients with end stage renal disease after renal transplantation. Endocrine. 2018;60:159–66.

    Article  CAS  PubMed  Google Scholar 

  20. Eckersten D, Giwercman A, Pihlsgård M, Bruun L, Christensson A. Impact of kidney transplantation on reproductive hormone levels in males: a longitudinal study. Nephron.2018;138:192–201.

    Article  CAS  PubMed  Google Scholar 

  21. Wang YJ, Wu JC, Lee SD, Tsai YT, Lo KJ. Gonadal dysfunction and changes in sex hormones in postnecrotic cirrhotic men: a matched study with alcoholic cirrhotic men. Hepatogastroenterology. 1991;38:531–4.

    CAS  PubMed  Google Scholar 

  22. Baker HW, Burger HG, de Kretser DM, Dulmanis A, Hudson B, O’Connor S. et al. A study of the endocrine manifestations of hepatic cirrhosis. Q J Med. 1976;45:145–78.

    CAS  PubMed  Google Scholar 

  23. Zietz B, Lock G, Plach B, Drobnik W, Grossmann J, Schölmerich J. et al. Dysfunction of the hypothalamic-pituitary-glandular axes and relation to Child-Pugh classification in male patients with alcoholic and virus-related cirrhosis. Eur J Gastroenterol Hepatol. 2003;15:495–501.

    CAS  PubMed  Google Scholar 

  24. Jha SK, Kannan S. Serum prolactin in patients with liver disease in comparison with healthy adults: a preliminary cross-sectional study. Int J Appl Basic Med Res. 2016;6:8–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L’age M, Meinhold H, Wenzel KW, Schleusener H. Relations between serum levels of TSH, TBG, T4, T3, rT3 and various histologically classified chronic liver diseases. J Endocrinol Invest. 1980;3:379–83.

    Article  PubMed  Google Scholar 

  26. Wortsman J, Rosner W, Dufau ML. Abnormal testicular function in men with primary hypothyroidism. Am J Med. 1987;82:207–12.

    Article  CAS  PubMed  Google Scholar 

  27. Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol. 2016;65:906–13.

    Article  CAS  PubMed  Google Scholar 

  28. Gluud C, Bennett P, Dietrichson O, Johnsen SG, Ranek L, Svendsen LB, et al. Short-term parenteral and peroral testosterone administration in men with alcoholic cirrhosis. Scand J Gastroenterol. 1981;16:749–55.

    Article  CAS  PubMed  Google Scholar 

  29. Wells R. Prednisolone and testosterone propionate in cirrhosis of the liver. A controlled trial. Lancet. 1960;2:1416–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yurci A, Yucesoy M, Unluhizarci K, Torun E, Gursoy S, Baskol M. et al. Effects of testosterone gel treatment in hypogonadal men with liver cirrhosis. Clin Res Hepatol Gastroenterol. 2011;35:845–54.

    Article  CAS  PubMed  Google Scholar 

  31. Castro GRA, Coelho JCU, Parolin MB, Matias JEF, de Freitas ACT. Insulin-like growth factor I correlates with MELD and returns to normal level after liver transplantation. Ann Transpl. 2013;18:57–62.

    Article  CAS  Google Scholar 

  32. Fenster LF. The nonefficacy of short-term anabolic steroid therapy in alcoholic liver disease. Ann Intern Med. 1966;65:738–44.

    Article  CAS  Google Scholar 

  33. Floreani A, Mega A, Tizian L, Burra P, Boccagni P, Baldo V, et al. Bone metabolism and gonad function in male patients undergoing liver transplantation: a two-year longitudinal study. Osteoporos Int. 2001;12:749–54.

    Article  CAS  PubMed  Google Scholar 

  34. Handelsman DJ, Strasser S, McDonald JA, Conway AJ, McCaughan GW. Hypothalamic-pituitary-testicular function in end-stage non-alcoholic liver disease before and after liver transplantation. Clin Endocrinol. 1995;43:331–7.

    Article  CAS  Google Scholar 

  35. Lenoir A, Fuertes E, Gómez-Real F, Leynaert B, Plaat DA van der, Jarvis D. Lung function changes over 8 years and testosterone markers in both sexes: UK Biobank. ERJ Open Research [Internet]. 2020 Jul [cited 2021 Jun 9];6. Available from: https://openres.ersjournals.com/content/6/3/00070-2020.

  36. Karakou E, Glynos C, Samara KD, Msaouel P, Koutsilieris M, Vassilakopoulos T. Profile of endocrinological derangements affecting PSA values in patients with COPD. Vivo. 2013;27:641–9.

    CAS  Google Scholar 

  37. Pison CM, Cano NJ, Chérion C, Caron F, Court-Fortune I, Antonini M-T. et al. Multimodal nutritional rehabilitation improves clinical outcomes of malnourished patients with chronic respiratory failure: a randomised controlled trial. Thorax. 2011;66:953–60.

    Article  PubMed  Google Scholar 

  38. Casaburi R, Bhasin S, Cosentino L, Porszasz J, Somfay A, Lewis MI. et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:870–8.

    Article  PubMed  Google Scholar 

  39. Baillargeon J, Urban RJ, Zhang W, Zaiden MF, Javed Z, Sheffield-Moore M. et al. Testosterone replacement therapy and hospitalization rates in men with COPD. Chron Respir Dis. 2019;16:1479972318793004

    Article  PubMed  Google Scholar 

  40. Card JW, Carey MA, Bradbury JA, DeGraff LM, Morgan DL, Moorman MP. et al. Gender differences in murine airway responsiveness and lipopolysaccharide-induced inflammation. J Immunol. 2006;177:621–30.

    Article  CAS  PubMed  Google Scholar 

  41. Voltz JW, Card JW, Carey MA, Degraff LM, Ferguson CD, Flake GP. et al. Male sex hormones exacerbate lung function impairment after bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2008;39:45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Márquez-Garbán DC, Chen H-W, Goodglick L, Fishbein MC, Pietras RJ. Targeting aromatase and estrogen signaling in human non-small cell lung cancer. Ann N. Y Acad Sci. 2009;1155:194–205.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu W-H, Yuan P, Zhang S-J, Jiang X, Wu C, Li Y. et al. Impact of pituitary–gonadal axis hormones on pulmonary arterial hypertension in men. Hypertension. 2018;72:151–8.

    Article  CAS  PubMed  Google Scholar 

  44. Reid IR, Wattie DJ, Evans MC, Stapleton JP. Testosterone therapy in glucocorticoid-treated men. Arch Intern Med. 1996;156:1173–7.

    Article  CAS  PubMed  Google Scholar 

  45. De Celis R, Pedrón-Nuevo N. Male fertility of kidney transplant patients with one to ten years of evolution using a conventional immunosuppressive regimen. Arch Androl. 1999;42:9–20.

    Article  PubMed  Google Scholar 

  46. Tauchmanovà L, Carrano R, Sabbatini M, De Rosa M, Orio F, Palomba S. et al. Hypothalamic-pituitary-gonadal axis function after successful kidney transplantation in men and women. Hum Reprod. 2004;19:867–73.

    Article  PubMed  Google Scholar 

  47. Cohen A, Sambrook P, Shane E. Management of bone loss after organ transplantation. J Bone Miner Res. 2004;19:1919–32.

    Article  PubMed  Google Scholar 

  48. Vigen R. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310:1829.

    Article  PubMed  Google Scholar 

  49. Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014;9:e85805.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Research C for DE and. FDA Drug Safety Communication: FDA cautions about using testosterone products for low testosterone due to aging; requires labeling change to inform of possible increased risk of heart attack and stroke with use. FDA [Internet]. 2019 Feb 9 [cited 2021 Oct 3]; Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-cautions-about-using-testosterone-products-low-testosterone-due.

  51. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM. et al. Testosterone Therapy in Men With Hypogonadism: An Endocrine Society* clinical practice guideline. J Clin Endocrinol Metab. 2018;103:1715–44.

    Article  PubMed  Google Scholar 

  52. Mulhall JP, Trost LW, Brannigan RE, Kurtz EG, Redmon JB, Chiles KA. et al. Evaluation and management of testosterone deficiency: AUA Guideline. J Urol. 2018;200:423–32.

    Article  PubMed  Google Scholar 

  53. Morris PD, Channer KS. Testosterone and cardiovascular disease in men. Asian J Androl. 2012;14:428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen Q, Li X, Li J, Zhang W, Li H, Liu F. A comparative survey of sex hormones levels between elderly men with chronic heart failure and normal elderly subjects. Zhonghua Xin Xue Guan Bing Za Zhi. 2005;33:505–8.

    CAS  PubMed  Google Scholar 

  55. Malkin CJ, Pugh PJ, Morris PD, Asif S, Jones TH, Channer KS. Low serum testosterone and increased mortality in men with coronary heart disease. Heart. 2010;96:1821–5.

    Article  CAS  PubMed  Google Scholar 

  56. Hyde Z, Norman PE, Flicker L, Hankey GJ, McCaul KA, Almeida OP. et al. Elevated LH predicts ischaemic heart disease events in older men: the Health in Men Study. Eur J Endocrinol. 2011;164:569–77.

    Article  CAS  PubMed  Google Scholar 

  57. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM. et al. Adverse events associated with testosterone administration. N. Engl J Med. 2010;363:109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shores MM, Smith NL, Forsberg CW, Anawalt BD, Matsumoto AM. Testosterone treatment and mortality in men with low testosterone levels. J Clin Endocrinol Metab. 2012;97:2050–8.

    Article  CAS  PubMed  Google Scholar 

  59. Jones TH, Arver S, Behre HM, Buvat J, Meuleman E, Moncada I. et al. Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care. 2011;34:828–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheetham TC, An J, Jacobsen SJ, Niu F, Sidney S, Quesenberry CP. et al. Association of testosterone replacement with cardiovascular outcomes among men with androgen deficiency. JAMA Intern Med. 2017;177:491–9.

    Article  PubMed  Google Scholar 

  61. Corona G, Rastrelli G, Pasquale GD, Sforza A, Mannucci E, Maggi M. Testosterone and cardiovascular risk: meta-analysis of interventional studies. J Sex Med. 2018;15:820–38.

    Article  PubMed  Google Scholar 

  62. Gagliano-Jucá T, Basaria S. Testosterone replacement therapy and cardiovascular risk. Nat Rev Cardiol. 2019;16:555–74.

    Article  PubMed  Google Scholar 

  63. Fleischer J, McMahon DJ, Hembree W, Addesso V, Longcope C, Shane E. Serum testosterone levels after cardiac transplantation. Transplantation. 2008;85:834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Poglajen G, Jensterle M, Kravos N, Janež A, Vrtovec B. Low serum testosterone is associated with impaired graft function early after heart transplantation. Clin Transplant. 2017;31:e12970.

    Article  Google Scholar 

  65. Caretta N, Feltrin G, Tarantini G, D’Agostino C, Tona F, Selice R. et al. Low serum testosterone as a new risk factor for chronic rejection in heart transplanted men. Transplantation. 2013;96:501–5.

    Article  CAS  PubMed  Google Scholar 

  66. Schofield RS, Hill JA, McGinn CJ, Aranda JM. Hormone therapy in men and risk of cardiac allograft rejection. J Heart Lung Transpl. 2002;21:493–5.

    Article  Google Scholar 

  67. Tandler R, Kondruweit M, Fischlein T, Weyand M. Hormone therapy in men—increased risk of cardiac allograft rejection?. J Heart Lung Transplant. 2003;22:831

    Article  CAS  PubMed  Google Scholar 

  68. Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294:87–94.

    Article  CAS  PubMed  Google Scholar 

  69. Thirumavalavan N, Scovell JM, Lo E, Gondokusomo J, Khera M, Pastuszak AW, et al. Is treatment of hypogonadism safe for men after a solid organ transplant? Results from a retrospective controlled cohort study. Int J Impot Res [Internet]. 2020 Oct [cited 2021 Dec 9]; [5p.]. Epub 2020 Oct 7. Available from: https://doi.org/10.1038/s41443-020-00361-z.

  70. Mechlin CW, Frankel J, McCullough A. Coadministration of anastrozole sustains therapeutic testosterone levels in hypogonadal men undergoing testosterone pellet insertion. J Sex Med. 2014;11:254–61.

    Article  CAS  PubMed  Google Scholar 

  71. Katz DJ, Nabulsi O, Tal R, Mulhall JP. Outcomes of clomiphene citrate treatment in young hypogonadal men. BJU Int. 2012;110:573–8.

    Article  CAS  PubMed  Google Scholar 

  72. Delu A, Kiltz RJ, Kuznetsov VA, Trussell JC. Clomiphene citrate improved testosterone and sperm concentration in hypogonadal males. Syst Biol Reprod Med. 2020;66:364–9.

    Article  CAS  PubMed  Google Scholar 

  73. Madhusoodanan V, Patel P, Lima TFN, Gondokusumo J, Lo E, Thirumavalavan N. et al. Human Chorionic Gonadotropin monotherapy for the treatment of hypogonadal symptoms in men with total testosterone > 300 ng/dL. Int Braz J Urol. 2019;45:1008–12.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zeyneloglu HB, Oktem M, Durak T. Male infertility after renal transplantation: achievement of pregnancy after intracytoplasmic sperm injection. Transpl Proc. 2005;37:3081–4.

    Article  CAS  Google Scholar 

  75. Qiu Y, Yanase T, Hu H, Tanaka T, Nishi Y, Liu M. et al. Dihydrotestosterone suppresses foam cell formation and attenuates atherosclerosis development. Endocrinology. 2010;151:3307–16.

    Article  CAS  PubMed  Google Scholar 

  76. Corcoran MP, Meydani M, Lichtenstein AH, Schaefer EJ, Dillard A, Lamon-Fava S. Sex hormone modulation of proinflammatory cytokine and C-reactive protein expression in macrophages from older men and postmenopausal women. J Endocrinol. 2010;206:217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception or design of the work: DOL, NT. Data collection: DOL, EJ, KG, NS, WM, CB. Data analysis and interpretation: DOL, EJ, KG, NS, WM, CB. Drafting the article: DOL, EJ. Critical revision of the article: DOL, RAG, AL, NT. Final approval of the version to be published: NT.

Corresponding author

Correspondence to Nannan Thirumavalavan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1. Search terms:

  1. a.

    Testosterone deficiency:

    1. i.

      Testosterone deficiency

    2. ii.

      Hypogonadism

    3. iii.

      Testosterone

    4. iv.

      Testosterone replacement

  2. b.

    Kidney disease

    1. i.

      Chronic kidney disease

    2. ii.

      CKD

    3. iii.

      Renal disease

    4. iv.

      Renal failure

    5. v.

      Renal transplant

  3. c.

    Liver disease

    1. i.

      Liver disease

    2. ii.

      Chronic liver disease

    3. iii.

      Cirrhosis

    4. iv.

      Liver failure

    5. v.

      Liver transplabt

  4. d.

    Lung disease

    1. i.

      Lung disease

    2. ii.

      Pulmonary disease

    3. iii.

      COPD

    4. iv.

      Chronic obstructive pulmonary disease

    5. v.

      Lung transplant

  5. e.

    Heart disease

    1. i.

      Heart disease

    2. ii.

      Heart failure

    3. iii.

      Congestive heart failure

    4. iv.

      CHF

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omil-Lima, D., Jesse, E., Gupta, K. et al. Testosterone deficiency in male organ transplant recipients. Int J Impot Res 34, 679–684 (2022). https://doi.org/10.1038/s41443-021-00513-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41443-021-00513-9

Search

Quick links