Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

24-h central pressure is a valuable predictor for left ventricular hypertrophy in non-dialysis patients with chronic kidney disease

Abstract

The current research on the relationship between 24-h central pressure and 24-h brachial pressure with left ventricular hypertrophy (LVH) is characterised by limited sample size and inconsistent findings. Furthermore, the association has never been explored in chronic kidney disease (CKD). A multicentre, cross-sectional study among non-dialysis patients with CKD was conducted. All participants underwent brachial and central ambulatory blood pressure monitoring using MobilO-Graph PWA, while trained cardiologists performed echocardiography. In this study, 2117 non-dialysis patients with CKD were examined. 24-h central systolic blood pressure with c2 calibration (24-h c2SBP) demonstrated a stronger association with left ventricular mass index and LVH compared with 24-h brachial systolic blood pressure (24-h bSBP) in the univariate and multivariate regression analyses. The multivariate net reclassification index (NRI) analysis revealed that 24-h c2SBP exhibited greater discriminatory power over 24-h bSBP (NRI = 0.310, 95% CI [0.192–0.429], P < 0.001). Applying 130/135 mmHg as the threshold for 24-h bSBP/c2SBP to cross-classify, the patients were divided into concordant normotension (1509 individuals), isolated brachial hypertension (155 individuals), isolated central hypertension (11 individuals), and concordant hypertension (442 individuals). With concordant normotension as the reference, the multivariable-adjusted ORs were 0.954 (95% CI, 0.534–1.640; P = 0.870) for isolated brachial hypertension and 2.585 (95%CI, 1.841–3.633; P < 0.001) for concordant hypertension. Among non-dialysis patients with CKD, 24-h c2SBP exhibits greater efficacy in identifying the presence of LVH compared with 24-h bSBP. The presence of LVH was greater in cases of concordant hypertension compared with cases of isolated brachial hypertension and concordant normotension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395:709–33.

    Article  Google Scholar 

  2. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223–49.

    Article  Google Scholar 

  3. Staplin N, de la Sierra A, Ruilope LM, Emberson JR, Vinyoles E, Gorostidi M, et al. Relationship between clinic and ambulatory blood pressure and mortality: an observational cohort study in 59 124 patients. Lancet. 2023;401:2041–50.

    Article  PubMed  Google Scholar 

  4. McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35:1719–25.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–25.

    Article  CAS  PubMed  Google Scholar 

  6. Weber T, Protogerou AD, Agharazii M, Argyris A, Aoun Bahous S, Banegas JR, et al. Twenty-four-hour central (aortic) systolic blood pressure: reference values and dipping patterns in untreated individuals. Hypertension. 2022;79:251–60.

    Article  CAS  PubMed  Google Scholar 

  7. Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023;41:1874–2071.

    Article  CAS  PubMed  Google Scholar 

  8. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez CJ, Lin F, Sacco RL, Jin Z, Boden-Albala B, Homma S, et al. Prognostic implications of left ventricular mass among Hispanics: the Northern Manhattan Study. Hypertension. 2006;48:87–92.

    Article  CAS  PubMed  Google Scholar 

  10. Paoletti E, De Nicola L, Gabbai FB, Chiodini P, Ravera M, Pieracci L, et al. Associations of left ventricular hypertrophy and geometry with adverse outcomes in patients with CKD and hypertension. Clin J Am Soc Nephrol. 2016;11:271–9.

    Article  CAS  PubMed  Google Scholar 

  11. Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.

    Article  CAS  PubMed  Google Scholar 

  12. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. Jama. 2004;292:2350–6.

    Article  CAS  PubMed  Google Scholar 

  13. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I, et al. Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation. 1998;97:48–54.

    Article  CAS  PubMed  Google Scholar 

  14. Weber T, Wassertheurer S, Schmidt-Trucksäss A, Rodilla E, Ablasser C, Jankowski P, et al. Relationship between 24-hour ambulatory central systolic blood pressure and left ventricular mass: a prospective multicenter study. Hypertension. 2017;70:1157–64.

    Article  CAS  PubMed  Google Scholar 

  15. Protogerou AD, Argyris AA, Papaioannou TG, Kollias GE, Konstantonis GD, Nasothimiou E, et al. Left-ventricular hypertrophy is associated better with 24-h aortic pressure than 24-h brachial pressure in hypertensive patients: the SAFAR study. J Hypertens. 2014;32:1805–14.

    Article  CAS  PubMed  Google Scholar 

  16. Omboni S, Posokhov I, Parati G, Arystan A, Tan I, Barkan V, et al. Variable association of 24-h peripheral and central hemodynamics and stiffness with hypertension-mediated organ damage: the VASOTENS Registry. J Hypertens. 2020;38:701–15.

    Article  CAS  PubMed  Google Scholar 

  17. Blanch P, Armario P, Oliveras A, Fernández-Llama P, Vázquez S, Pareja J, et al. Association of either left ventricular hypertrophy or diastolic dysfunction with 24-hour central and peripheral blood pressure. Am J Hypertens. 2018;31:1293–99.

    Article  CAS  PubMed  Google Scholar 

  18. Hu Y, Zhao J, Wang Q, Chao H, Tang B, Cheng D, et al. Disparate associations of 24-h central aortic and brachial cuff blood pressure with hypertension-mediated organ damage and cardiovascular risk. Front Cardiovasc Med. 2022;9:795509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Argyris AA, Samara S, Blacher J, Papaioannou TG, Stergiou GS, Vlachopoulos C, et al. ‘Apples to oranges’ and ‘Less is more’. J Hypertens 2021;39:1262–64.

    Article  CAS  PubMed  Google Scholar 

  20. Matsushita K, Ballew SH, Wang AY, Kalyesubula R, Schaeffner E, Agarwal R. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol. 2022;18:696–707.

    Article  PubMed  Google Scholar 

  21. Rahman M, Wang X, Bundy JD, Charleston J, Cohen D, Cohen J, et al. Prognostic significance of ambulatory BP monitoring in CKD: a report from the chronic renal insufficiency cohort (CRIC) study. J Am Soc Nephrol. 2020;31:2609–21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Protogerou AD, Aissopou EK, Argyris A, Nasothimiou EG, Konstantonis GD, Karamanou M, et al. Phenotypes of office systolic blood pressure according to both brachial and aortic measurements: frequencies and associations with carotid hypertrophy in 1861 adults. J Hypertens. 2016;34:1325–30.

    Article  CAS  PubMed  Google Scholar 

  23. Jones CR, Taylor K, Chowienczyk P, Poston L, Shennan AH. A validation of the Mobil O Graph (version 12) ambulatory blood pressure monitor. Blood Press Monit. 2000;5:233–8.

    Article  CAS  PubMed  Google Scholar 

  24. Franssen PM, Imholz BP. Evaluation of the Mobil-O-Graph new generation ABPM device using the ESH criteria. Blood Press Monit. 2010;15:229–31.

    Article  PubMed  Google Scholar 

  25. Gotzmann M, Hogeweg M, Seibert FS, Rohn BJ, Bergbauer M, Babel N, et al. Accuracy of fully automated oscillometric central aortic blood pressure measurement techniques. J Hypertens. 2020;38:235–42.

    Article  CAS  PubMed  Google Scholar 

  26. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.

    Article  CAS  PubMed  Google Scholar 

  27. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14

    Article  PubMed  Google Scholar 

  28. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    Article  CAS  PubMed  Google Scholar 

  29. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Article  PubMed  Google Scholar 

  30. Kawel-Boehm N, Kronmal R, Eng J, Folsom A, Burke G, Carr JJ, et al. Left ventricular mass at MRI and long-term risk of cardiovascular events: the multi-ethnic study of atherosclerosis (MESA). Radiology. 2019;293:107–14.

    Article  PubMed  Google Scholar 

  31. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27:2458–64.

    Article  CAS  PubMed  Google Scholar 

  32. Imaizumi T, Fujii N, Hamano T, Yang W, Taguri M, Kansal M, et al. Excess risk of cardiovascular events in patients in the United States vs. Japan with chronic kidney disease is mediated mainly by left ventricular structure and function. Kidney Int. 2023;103:949–61.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 2016;34:1237–48.

    Article  CAS  PubMed  Google Scholar 

  34. G Celler B, Butlin M, Argha A, Tan I, Yong A, Avolio A. Are korotkoff sounds reliable markers for accurate estimation of systolic and diastolic pressure using brachial cuff sphygmomanometry? IEEE Trans Biomed Eng. 2021;68:3593–601.

    Article  PubMed  Google Scholar 

  35. Smulyan H, Sheehe PR, Safar ME. A preliminary evaluation of the mean arterial pressure as measured by cuff oscillometry. Am J Hypertens. 2008;21:166–71.

    Article  PubMed  Google Scholar 

  36. Argyris AA, Mouziouras D, Samara S, Zhang Y, Georgakis MK, Blacher J, et al. Superiority of 24-hour aortic over 24-hour brachial pressure to associate with carotid arterial damage on the basis of pressure amplification variability: the SAFAR Study. Hypertension. 2022;79:648–58.

    Article  CAS  PubMed  Google Scholar 

  37. McGaughey TJ, Fletcher EA, Shah SA. Impact of antihypertensive agents on central systolic blood pressure and augmentation index: a meta-analysis. Am J Hypertens. 2016;29:448–57.

    Article  CAS  PubMed  Google Scholar 

  38. Meng L. Heterogeneous impact of hypotension on organ perfusion and outcomes: a narrative review. Br J Anaesth. 2021;127:845–61.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–7.

    Article  CAS  PubMed  Google Scholar 

  40. Nikorowitsch J, Bei der Kellen R, Haack A, Magnussen C, Prochaska J, Wild PS, et al. Correlation of systolic and diastolic blood pressure with echocardiographic phenotypes of cardiac structure and function from three German population-based studies. Sci Rep. 2023;13:14525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379:815–22.

    Article  PubMed  Google Scholar 

  42. Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143:1157–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Protogerou AD, Argyris A, Nasothimiou E, Vrachatis D, Papaioannou TG, Tzamouranis D, et al. Feasibility and reproducibility of noninvasive 24-h ambulatory aortic blood pressure monitoring with a brachial cuff-based oscillometric device. Am J Hypertens. 2012;25:876–82.

    Article  PubMed  Google Scholar 

  44. Luzardo L, Lujambio I, Sottolano M, da Rosa A, Thijs L, Noboa O, et al. 24-h ambulatory recording of aortic pulse wave velocity and central systolic augmentation: a feasibility study. Hypertens Res. 2012;35:980–7.

    Article  PubMed  Google Scholar 

  45. Wang Y, Zhang DY, Guo QH, Cheng YB, Huang QF, Sheng CS, et al. Short-term reproducibility of the 24-h ambulatory monitoring of brachial and central hemodynamics in untreated Chinese. Blood Press. 2019;28:250–57.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate all the patients for participating in this study.

Funding

This work was supported by the Five-five Project of the Fifth Affiliated Hospital of Sun Yat-Sen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Tang or Cheng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Liu, L., Liu, S. et al. 24-h central pressure is a valuable predictor for left ventricular hypertrophy in non-dialysis patients with chronic kidney disease. Hypertens Res (2024). https://doi.org/10.1038/s41440-024-01654-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-024-01654-2

Keywords

Search

Quick links