Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Automated electrochemiluminescence immunoassay for serum PlGF levels in women with singleton pregnancy at 9–13 weeks of gestation predicts preterm preeclampsia: a retrospective cohort study

Abstract

Our aims were to obtain the gestational-age-specific median of common logarithmic placental growth factor (PlGF) values in the first trimester in women with a singleton pregnancy in order to generate the gestational-age-specific multiple of the median (MoM) of log10PlGF at 9–13 weeks of gestation, to evaluate screening parameters of MoM of log10PlGF at 9–13 weeks of gestation to predict preterm preeclampsia (PE), and to construct an appropriate prediction model for preterm PE using minimum risk factors in multivariable logistic regression analyses in a retrospective sub-cohort study. Preterm PE occurred in 2.9% (20/700), and PE in 5.1% (36/700). Serum PlGF levels were measured using Elecsys PlGF®. MoMs of log10PlGF at 9–13 weeks of gestation in Japanese women with a singleton pregnancy followed a normal distribution. We determined the appropriate cut-off value of MoM of log10PlGF to predict preterm PE at around a10% false-positive rate (0.854). The MoM of log10PlGF < 0.854 yielded sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio (95% confidence interval [CI]), and negative likelihood ratio (95% CI) of 55.0%, 91.9%, 17.5%, 98.5%, 6.79 (4.22–10.91), and 0.49 (0.30–0.80), respectively. The combination of MoM of log10PlGF and presence of either chronic hypertension or history of PE/gestational hypertension (GH) yielded sensitivity and specificity of 80.0 and 85.7%, respectively, to predict preterm PE. In conclusion, the automated electrochemiluminescence immunoassay for serum PlGF levels in women with singleton pregnancy at 9–13 weeks of gestation may be useful to predict preterm PE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Gorman N, Wright D, Rolnik DL, Nicolaides KH, Poon LC. Study protocol for the randomised controlled trial: combined multimarker screening and randomised patient treatment with ASpirin for evidence-based PREeclampsia prevention (ASPRE). BMJ Open. 2016;6:e011801.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

    Article  CAS  PubMed  Google Scholar 

  3. Ong CY, Lao TT, Spencer K, Nicolaides KH. Maternal serum level of placental growth factor in diabetic pregnancies. J Reprod Med. 2004;49:477–80.

    CAS  PubMed  Google Scholar 

  4. Akolekar R, Zaragoza E, Poon LC, Pepes S, Nicolaides KH. Maternal serum placental growth factor at 11 + 0 to 13 + 6 weeks of gestation in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol. 2008;32:732–9.

    Article  CAS  PubMed  Google Scholar 

  5. Cowans NJ, Stamatopoulou A, Spencer K. First trimester maternal serum placental growth factor in trisomy 21 pregnancies. Prenat Diagn. 2010;30:449–53.

    Article  CAS  PubMed  Google Scholar 

  6. Cowans NJ, Stamatopoulou A, Tørring N, Spencer K. Early first-trimester maternal serum placental growth factor in trisomy 21 pregnancies. Ultrasound Obstet Gynecol. 2011;37:515–9.

    Article  CAS  PubMed  Google Scholar 

  7. Wortelboer EJ, Koster MP, Kuc S, Eijkemans MJ, Bilardo CM, Schielen PC, et al. Longitudinal trends in fetoplacental biochemical markers, uterine artery pulsatility index and maternal blood pressure during the first trimester of pregnancy. Ultrasound Obstet Gynecol. 2011;38:383–8.

    Article  CAS  PubMed  Google Scholar 

  8. Vandenberghe G, Mensink I, Twisk JW, Blankenstein MA, Heijboer AC, van Vugt JM. First trimester screening for intra-uterine growth restriction and early-onset pre-eclampsia. Prenat Diagn. 2011;31:955–61.

    Article  CAS  PubMed  Google Scholar 

  9. Donalson K, Turner S, Morrison L, Liitti P, Nilsson C, Cuckle H. Maternal serum placental growth factor and α-fetoprotein testing in first trimester screening for Down syndrome. Prenat Diagn. 2013;33:457–61.

    Article  CAS  PubMed  Google Scholar 

  10. Tsiakkas A, Duvdevani N, Wright A, Wright D, Nicolaides KH. Serum placental growth factor in the three trimesters of pregnancy: effects of maternal characteristics and medical history. Ultrasound Obstet Gynecol. 2015;45:591–8.

    Article  CAS  PubMed  Google Scholar 

  11. Huang T, Dennis A, Meschino WS, Rashid S, Mak-Tam E, Cuckle H. First trimester screening for Down syndrome using nuchal translucency, maternal serum pregnancy-associated plasma protein A, free-β human chorionic gonadotrophin, placental growth factor, and α-fetoprotein. Prenat Diagn. 2015;35:709–16.

    Article  CAS  PubMed  Google Scholar 

  12. Han J, Liu H, Xu ZP, Cuckle H, Sahota D, Li DZ, et al. Maternal serum PlGF (placental growth factor) in Chinese women in the first trimester undergoing screening for Down syndrome. Eur J Obstet Gynecol Reprod Biol. 2016;201:166–70.

    Article  CAS  PubMed  Google Scholar 

  13. Jayasena CN, Abbara A, Comninos AN, Narayanaswamy S, Gonzalez Maffe J, Izzi-Engbeaya C, et al. Novel circulating placental markers prokineticin-1, soluble fms-like tyrosine kinase-1, soluble endoglin and placental growth factor and association with late miscarriage. Hum Reprod. 2016;31:2681–8.

    Article  CAS  PubMed  Google Scholar 

  14. Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides KH. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther. 2013;33:8–15.

    Article  PubMed  Google Scholar 

  15. Poon LC, Kametas NA, Maiz N, Akolekar R, Nicolaides KH. First-trimester prediction of hypertensive disorders in pregnancy. Hypertension. 2009;53:812–8.

    Article  CAS  PubMed  Google Scholar 

  16. Tsiakkas A, Cazacu R, Wright A, Wright D, Nicolaides KH. Maternal serum placental growth factor at 12, 22, 32 and 36 weeks’ gestation in screening for pre-eclampsia. Ultrasound Obstet Gynecol. 2016;47:472–7.

    Article  CAS  PubMed  Google Scholar 

  17. Chaemsaithong P, Pooh RK, Zheng M, Ma R, Chaiyasit N, Tokunaka M, et al. Prospective evaluation of screening performance of first-trimester prediction models for preterm preeclampsia in an Asian population. Am J Obstet Gynecol. 2019;221:650.e1–650.e16.

    Article  PubMed  Google Scholar 

  18. Mazer Zumaeta A, Wright A, Syngelaki A, Maritsa VA, Da Silva AB, Nicolaides KH. Screening for pre-eclampsia at 11-13 weeks’ gestation: use of pregnancy-associated plasma protein-A, placental growth factor or both. Ultrasound Obstet Gynecol. 2020;56:400–7.

    Article  CAS  PubMed  Google Scholar 

  19. Boutin A, Gasse C, Guerby P, Giguère Y, Tétu A, Bujold E. First-trimester preterm preeclampsia screening in nulliparous women: the great obstetrical syndrome (GOS) Study. J Obstet Gynaecol Can. 2021;43:43–9.

    Article  PubMed  Google Scholar 

  20. Law KS, Wei TY. Effect of low-dose aspirin in preventing early-onset preeclampsia in the Taiwanese population-a retrospective cohort study. Int J Womens Health. 2021;13:1095–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verlohren S, Galindo A, Schlembach D, Zeisler H, Herraiz I, Moertl MG, et al. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am J Obstet Gynecol. 2010;202:161.e1–161.e11.

    Article  PubMed  Google Scholar 

  22. Ohkuchi A, Hirashima C, Suzuki H, Takahashi K, Yoshida M, Matsubara S, et al. Evaluation of a new and automated electrochemiluminescence immunoassay for plasma sFlt-1 and PlGF levels in women with preeclampsia. Hypertens Res. 2010;33:422–7.

    Article  CAS  PubMed  Google Scholar 

  23. https://www.info.pmda.go.jp/downfiles/ivd/PDF/700025_23100EZX00013000_A_04_02.pdf Elecsys sFlt-1® [package insert]. Accessed 2 March 2023.

  24. https://www.info.pmda.go.jp/downfiles/ivd/PDF/700025_23100EZX00014000_B_02_02.pdf Elecsys PlGF® [package insert]. Accessed 2 March 2023.

  25. Chaemsaithong P, Sahota D, Pooh RK, Zheng M, Ma R, Chaiyasit N, et al. First-trimester pre-eclampsia biomarker profiles in Asian population: multicenter cohort study. Ultrasound Obstet Gynecol. 2020;56:206–14.

    Article  CAS  PubMed  Google Scholar 

  26. Goto M, Koide K, Tokunaka M, Takita H, Hamada S, Nakamura M, et al. Accuracy of the FMF Bayes theorem-based model for predicting preeclampsia at 11-13 weeks of gestation in a Japanese population. Hypertens Res. 2021;44:685–91.

    Article  CAS  PubMed  Google Scholar 

  27. Watanabe K, Matsubara K, Nakamoto O, Ushijima J, Ohkuchi A, Koide K, et al. Outline of the new definition and classification of “Hypertensive Disorders of Pregnancy (HDP)”; a revised JSSHP statement of 2005. Hypertens Res Pregnancy. 2018;6:33–7.

    Article  Google Scholar 

  28. Ohkuchi A, Suzuki H, Matsubara K, Watanabe K, Saitou T, Oda H, et al. Exponential increase of the gestational-age-specific incidence of preeclampsia onset (COPE study): a multicenter retrospective cohort study in women with maternal check-ups at <20 weeks of gestation in Japan. Hypertens Res. 2022;45:1679–89.

    Article  PubMed  Google Scholar 

  29. Confidence Interval Calculator. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.pedro.org.au%2Fwp-content%2Fuploads%2FCIcalculator.xls&wdOrigin=BROWSELINK. Accessed 2 March 2023.

  30. Risk assessment: Risk of preeclampsia. https://fetalmedicine.org/research/assess/preeclampsia/first-trimester. Accessed 2 March 2023.

  31. Wright D, Tan MY, O’Gorman N, Poon LC, Syngelaki A, Wright A, et al. Predictive performance of the competing risk model in screening for preeclampsia. Am J Obstet Gynecol. 2019;220:199.e1–199.e13.

    Article  PubMed  Google Scholar 

  32. Vatten LJ, Åsvold BO, Eskild A. Angiogenic factors in maternal circulation and preeclampsia with or without fetal growth restriction. Acta Obstet Gynecol Scand. 2012;91:1388–94.

    Article  PubMed  Google Scholar 

  33. O’Gorman N, Wright D, Syngelaki A, Akolekar R, Wright A, Poon LC, et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks gestation. Am J Obstet Gynecol. 2016;214:103.e1–103.e12.

    Article  PubMed  Google Scholar 

  34. O’Gorman N, Wright D, Poon LC, Rolnik DL, Syngelaki A, Wright A, et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol. 2017;49:751–5.

    Article  PubMed  Google Scholar 

  35. Tan MY, Syngelaki A, Poon LC, Rolnik DL, O’Gorman N, Delgado JL, et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol. 2018;52:186–95.

    Article  CAS  PubMed  Google Scholar 

  36. Ohkuchi A, Hirashima C, Arai R, Takahashi K, Suzuki H, Ogoyama M, et al. Temporary hypertension and white coat hypertension in the first trimester as risk factors for preeclampsia. Hypertens Res. 2019;42:2002–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.O. acknowledges the kind gift of Elecsys PlGF, and cooperation of Roche Diagnostics for PlGF measurement. A.O. also acknowledges OMRON Healthcare Co. Ltd., because clinic BP of all pregnant women who sought maternal checkups at our hospital was measured using Omron HEM-906®, and home blood pressure (HBP) was measured using HBP monitoring devices (Omron HEM-5001® and Omron HEM-7080IC®) in some women with suspected H.T., based on a research contract with OMRON Healthcare Co., Ltd. (RinA-Dai07-30 and RinA-Dai15-215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihide Ohkuchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohkuchi, A., Takahashi, K., Hirashima, C. et al. Automated electrochemiluminescence immunoassay for serum PlGF levels in women with singleton pregnancy at 9–13 weeks of gestation predicts preterm preeclampsia: a retrospective cohort study. Hypertens Res 47, 1196–1207 (2024). https://doi.org/10.1038/s41440-023-01534-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01534-1

Keywords

Search

Quick links