Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-invasive left ventricular pressure-strain loop study on cardiac fibrosis in primary aldosteronism: a comparative study with cardiac magnetic resonance imaging

Abstract

We investigated the potential diagnostic value of the myocardial work indices based on speckle tracking echocardiography for cardiac fibrosis in patients with primary aldosteronism. Our observational study included 48 patients with primary aldosteronism. We performed conventional echocardiography and the left ventricular pressure-strain loop analysis. We also performed cardiac magnetic resonance imaging to evaluate cardiac replacement fibrosis defined as late gadolinium enhancement (LGE). Patients with LGE (n = 30, 62.5%) had longer duration of hypertension and higher plasma NT-proBNP than those without LGE. Besides, they had a significantly (P ≤ 0.04) higher left ventricular mass index (121.3 ± 19.5 vs. 103.3 ± 20.0 g/m2) and global wasted work (205 ± 78 vs. 141 ± 36 mmHg%) and lower global longitudinal strain (−17.7 ± 1.8 vs. −19.0 ± 2.4%) and work efficiency (GWE, 90.9 ± 2.4 vs. 93.8 ± 1.5%). Receiver Operating Characteristics analysis showed that GWE ≤ 92% had a sensitivity and specificity of 76.7% and 83.3%, respectively, for LGE with the area under curve 0.85 (P < 0.001). In conclusion, both cardiac structure and function were impaired in patients with primary aldosteronism and cardiac fibrosis. The myocardial work index GWE showed significant value for the indication of cardiac fibrosis.

Characterization of cardiac fibrosis in primary aldosteronism and the detective value of clinical and echocardiographic indices. Cardiac fibrosis was presented in 30 of the 48 analyzed primary aldosteronism patients with focal high signal intensity in mid-layer myocardium in limited segments as its characterization. The global work efficiency (GWE) had a significantly higher detective value for myocardial replacement fibrosis than other measurements such as left ventricular mass index (LVMI) and NT-proBNP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Käyser SC, Dekkers T, Groenewoud HJ, van der Wilt GJ, Carel Bakx J, van der Wel MC, et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: a systematic review and meta-regression analysis. J Clin Endocrinol Metab. 2016;101:2826–35.

    Article  PubMed  Google Scholar 

  2. Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol. 2017;69:1811–20.

    Article  PubMed  Google Scholar 

  3. Brilla CG, Weber KT. Reactive and reparative myocardial fibrosis in arterial hypertension in the rat. Cardiovasc Res. 1992;26:671–7.

    Article  CAS  PubMed  Google Scholar 

  4. Sun Y, Ramires FJ, Weber KT. Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res. 1997;35:138–47.

    Article  CAS  PubMed  Google Scholar 

  5. Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6:41–50.

    Article  CAS  PubMed  Google Scholar 

  6. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.

    Article  PubMed  Google Scholar 

  7. Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006;113:2733–43.

    Article  PubMed  Google Scholar 

  8. Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118:1011–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Freel EM, Mark PB, Weir RA, McQuarrie EP, Allan K, Dargie HJ, et al. Demonstration of blood pressure-independent noninfarct myocardial fibrosis in primary aldosteronism: a cardiac magnetic resonance imaging study. Circ Cardiovasc Imaging. 2012;5:740–7.

    Article  PubMed  Google Scholar 

  10. Su MY, Wu VC, Yu HY, Lin YH, Kuo CC, Liu KL, et al. Contrast-enhanced MRI index of diffuse myocardial fibrosis is increased in primary aldosteronism. J Magn Reson Imaging. 2012;35:1349–55.

    Article  PubMed  Google Scholar 

  11. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J. 2012;33:724–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. van der Bijl P, Kostyukevich M, El Mahdiui M, Hansen G, Samset E, Ajmone Marsan N, et al. A roadmap to assess myocardial work: from theory to clinical practice. JACC Cardiovasc Imaging 2019;12:2549–54.

    Article  PubMed  Google Scholar 

  13. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  14. Chen SX, Du YL, Zhang J, Gong YC, Hu YR, Chu SL, et al. Aldosterone-to-renin ratio threshold for screening primary aldosteronism in Chinese hypertensive patients. Zhonghua Xin Xue Guan Bing Za Zhi. 2006;34:868–72.

    CAS  PubMed  Google Scholar 

  15. Mulatero P, Monticone S, Deinum J, Amar L, Prejbisz A, Zennaro MC, et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: A position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertens. 2020;38:1919–28.

    Article  CAS  PubMed  Google Scholar 

  16. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.

    Article  CAS  PubMed  Google Scholar 

  17. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.

    Article  PubMed  Google Scholar 

  18. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Gjesdal O, et al. Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am J Physiol Heart Circ Physiol. 2013;305:H996–1003.

    Article  CAS  PubMed  Google Scholar 

  19. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  20. Yang T, Lu M, Ouyang W, Li B, Yang Y, Zhao S, et al. Prognostic value of myocardial scar by magnetic resonance imaging in patients undergoing coronary artery bypass graft. Int J Cardiol. 2021;326:49–54.

    Article  PubMed  Google Scholar 

  21. Cauwenberghs N, Tabassian M, Thijs L, Yang WY, Wei FF, Claus P, et al. Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study. Cardiovasc Ultrasound. 2019;17:15.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Manganaro R, Marchetta S, Dulgheru R, Ilardi F, Sugimoto T, Robinet S, et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2019;20:582–90.

    Article  PubMed  Google Scholar 

  23. Galli E, Leclercq C, Fournet M, Hubert A, Bernard A, Smiseth OA, et al. Value of myocardial work estimation in the prediction of response to cardiac resynchronization therapy. J Am Soc Echocardiogr. 2018;31:220–30.

    Article  PubMed  Google Scholar 

  24. Chen YL, Xu TY, Xu JZ, Zhu LM, Li Y, Wang JG. A non-invasive left ventricular pressure-strain loop study on myocardial work in primary aldosteronism. Hypertens Res. 2021;44:1462–70.

    Article  CAS  PubMed  Google Scholar 

  25. Ambale-Venkatesh B, Lima JA. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 2015;12:18–29.

    Article  CAS  PubMed  Google Scholar 

  26. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71:549–74.

    Article  CAS  PubMed  Google Scholar 

  27. Sahiti F, Morbach C, Cejka V, Tiffe T, Wagner M, Eichner FA, et al. Impact of cardiovascular risk factors on myocardial work-insights from the STAAB cohort study. J Hum Hypertens. 2022;36:235–45.

    Article  PubMed  Google Scholar 

  28. Sahiti F, Morbach C, Cejka V, Albert J, Eichner FA, Gelbrich G, et al. Left ventricular remodeling and myocardial work: results from the population-based STAAB cohort study. Front Cardiovasc Med. 2021;8:669335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cimino S, Canali E, Petronilli V, Cicogna F, De Luca L, Francone M, et al. Global and regional longitudinal strain assessed by two-dimensional speckle tracking echocardiography identifies early myocardial dysfunction and transmural extent of myocardial scar in patients with acute ST elevation myocardial infarction and relatively preserved LV function. Eur Heart J Cardiovasc Imaging. 2013;14:805–11.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao H, Lee AP, Li Z, Qiao Z, Fan Y, An D, et al. Impact of intramyocardial hemorrhage and microvascular obstruction on cardiac mechanics in reperfusion injury: a speckle-tracking echocardiographic study. J Am Soc Echocardiogr. 2016;29:973–82.

    Article  PubMed  Google Scholar 

  31. Kwon BJ, Choi KY, Kim DB, Jang SW, Cho EJ, Youn HJ, et al. Systolic synchrony is impaired in nonleft ventricular hypertrophy of never-treated hypertensive patients. J Hypertens. 2011;29:2246–54.

    Article  CAS  PubMed  Google Scholar 

  32. Santos AB, Kraigher-Krainer E, Bello N, Claggett B, Zile MR, Pieske B, et al. Left ventricular dyssynchrony in patients with heart failure and preserved ejection fraction. Eur Heart J. 2014;35:42–7.

    Article  CAS  PubMed  Google Scholar 

  33. Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, et al. Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016;17:613–21.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moreo A, Ambrosio G, De Chiara B, Pu M, Tran T, Mauri F, et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging. 2009;2:437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Manganaro R, Marchetta S, Dulgheru R, Sugimoto T, Tsugu T, Ilardi F, et al. Correlation between non-invasive myocardial work indices and main parameters of systolic and diastolic function: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2020;21:533–41.

    Article  PubMed  Google Scholar 

  36. Kawasaki T, Sakai C, Harimoto K, Yamano M, Miki S, Kamitani T. Usefulness of high-sensitivity cardiac troponin T and brain natriuretic peptide as biomarkers of myocardial fibrosis in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2013;112:867–72.

    Article  CAS  PubMed  Google Scholar 

  37. Liu CY, Heckbert SR, Lai S, Ambale-Venkatesh B, Ostovaneh MR, McClelland RL, et al. Association of elevated NT-proBNP with myocardial fibrosis in the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2017;70:3102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ambale Venkatesh B, Volpe GJ, Donekal S, Mewton N, Liu CY, Shea S, et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the Multi-Ethnic Study of Atherosclerosis study. Hypertension. 2014;64:508–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the voluntary participation of all subjects.

Funding

The study investigators were financially supported by grants from the National Natural Science Foundation of China (82070432, 82070435, and 82270469) and Ministry of Science and Technology (grants 2018YFC1704902 and 2022YFC3601302), Beijing, China, and from the Shanghai Commissions of Science and Technology (grant 19DZ2340200 and 22S31905100), and Health (a special grant for “leading academics” 2022LJ022), Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Yan Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YL., Chen, CH., Xu, TY. et al. Non-invasive left ventricular pressure-strain loop study on cardiac fibrosis in primary aldosteronism: a comparative study with cardiac magnetic resonance imaging. Hypertens Res 47, 445–454 (2024). https://doi.org/10.1038/s41440-023-01482-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01482-w

Keywords

This article is cited by

Search

Quick links