Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – JSH2023 OSAKA
  • Published:

Enhancement of angiotensin II type 1 receptor-associated protein in the paraventricular nucleus suppresses angiotensin II-dependent hypertension

Abstract

The renin-angiotensin system in the brain plays a pivotal role in modulating sympathetic nerve activity and contributes to the pathogenesis of hypertension. Angiotensin II (Ang II) type 1 receptor (AT1R)-associated protein (ATRAP) promotes internalization of AT1R while suppressing pathological overactivation of AT1R signaling. However, the pathophysiological function of ATRAP in the brain remains unknown. Therefore, this study aims to investigate whether ATRAP in the paraventricular nucleus (PVN) is involved in neurogenic hypertension pathogenesis in Ang II-infused rats. The ATRAP/AT1R ratio, which serves as an indicator of tissue AT1R hyperactivity, tended to decrease within the PVN in the Ang II group than in the vehicle group. This suggests an Ang II-induced hyperactivation of the AT1R signaling pathway in the PVN. Lentiviral vectors were generated to stimulate ATRAP expression. At 6 weeks of age, rats were microinjected with LV-Venus (Venus-expressing lentivirus) or LV-ATRAP (Venus-ATRAP-expressing lentivirus). The rats were then randomly divided into four groups: (1) Vehicle/LV-Venus, (2) Vehicle/LV-ATRAP, (3) Ang II/LV-Venus, and (4) Ang II/LV-ATRAP. Two weeks after microinjection, vehicle or Ang II was administered systemically for 2 weeks. In the Ang II/LV-ATRAP group, systolic blood pressure at 1 and 2 weeks following administration was significantly lower than that in the Ang II/LV-Venus group. Furthermore, urinary adrenaline levels tended to decrease in the Ang II/LV-ATRAP group than in the Ang II/LV-Venus group. These findings suggest that enhanced ATRAP expression in the PVN suppresses Ang II-induced hypertension, potentially by suppressing hyperactivation of the tissue AT1R signaling pathway and, subsequently, sympathetic nerve activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data were included in this study. These datasets are available from the corresponding authors upon request.

References

  1. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10:457–66.

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka M. Improving obesity and blood pressure. Hypertens Res. 2020;43:79–89.

    Article  PubMed  Google Scholar 

  3. Hasegawa S, Inoue T, Nakamura Y, Fukaya D, Uni R, Wu CH, et al. Activation of sympathetic signaling in macrophages blocks systemic inflammation and protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2021;32:1599–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao L, do Carmo LS, Foss JD, Chen W, Harrison DG. Sympathetic enhancement of memory T-cell homing and hypertension sensitization. Circ Res. 2020;126:708–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dupont AG, Légat L. GABA is a mediator of brain AT1 and AT2 receptor-mediated blood pressure responses. Hypertens Res. 2020;43:995–1005.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson AK, Xue B. Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol. 2018;14:750–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guyenet PG, Stornetta RL, Souza G, Abbott SBG, Brooks VL. Neuronal networks in hypertension: recent advances. Hypertension. 2020;76:300–11.

    Article  CAS  PubMed  Google Scholar 

  8. Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res. 2012;35:132–41.

    Article  CAS  PubMed  Google Scholar 

  9. Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol. 2018;315:H1200–H1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma NM, Haibara AS, Katsurada K, Nandi SS, Liu X, Zheng H, et al. Central Ang II (angiotensin II)-mediated sympathoexcitation: role for HIF-1α (hypoxia-inducible factor-1α) facilitated glutamatergic tone in the paraventricular nucleus of the hypothalamus. Hypertension. 2021;77:147–57.

    Article  CAS  PubMed  Google Scholar 

  11. Wei SG, Yu Y, Zhang ZH, Felder RB. Angiotensin II upregulates hypothalamic AT1 receptor expression in rats via the mitogen-activated protein kinase pathway. Am J Physiol Heart Circ Physiol. 2009;296:H1425–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen A, Huang BS, Wang HW, Ahmad M, Leenen FH. Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats. J Physiol. 2014;592:3523–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sriramula S, Cardinale JP, Lazartigues E, Francis J. ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res. 2011;92:401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen XY, Lin C, Liu GY, Pei C, Xu GQ, Gao L, et al. ACE2 gene combined with exercise training attenuates central AngII/AT1 axis function and oxidative stress in a prehypertensive rat model. J Appl Physiol. 2022;132:1460–7.

    Article  CAS  PubMed  Google Scholar 

  15. Su C, Xue J, Ye C, Chen A. Role of the central renin‑angiotensin system in hypertension (Review). Int J Mol Med. 2021;47:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tamura K, Azushima K, Kinguchi S, Wakui H, Yamaji T. ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res. 2022;45:32–39.

    Article  CAS  PubMed  Google Scholar 

  17. Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M, Dzau VJ. Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem. 1999;274:17058–62.

    Article  CAS  PubMed  Google Scholar 

  18. Lopez-Ilasaca M, Liu X, Tamura K, Dzau VJ. The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell. 2003;14:5038–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Azuma K, Tamura K, Shigenaga A, Wakui H, Masuda S, Tsurumi-Ikeya Y, et al. Novel regulatory effect of angiotensin II type 1 receptor-interacting molecule on vascular smooth muscle cells. Hypertension. 2007;50:926–32.

    Article  CAS  PubMed  Google Scholar 

  20. Wakui H, Tamura K, Tanaka Y, Matsuda M, Bai Y, Dejima T, et al. Cardiac-specific activation of angiotensin II type 1 receptor-associated protein completely suppresses cardiac hypertrophy in chronic angiotensin II-infused mice. Hypertension. 2010;55:1157–64.

    Article  CAS  PubMed  Google Scholar 

  21. Ohsawa M, Tamura K, Wakui H, Maeda A, Dejima T, Kanaoka T, et al. Deletion of the angiotensin II type 1 receptor-associated protein enhances renal sodium reabsorption and exacerbates angiotensin II-mediated hypertension. Kidney Int. 2014;86:570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kinguchi S, Wakui H, Azushima K, Haruhara K, Koguchi T, Ohki K, et al. Effects of ATRAP in renal proximal tubules on angiotensin-dependent hypertension. J Am Heart Assoc. 2019;8:e012395.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Uneda K, Wakui H, Maeda A, Azushima K, Kobayashi R, Haku S, et al. Angiotensin II type 1 receptor-associated protein regulates kidney aging and lifespan independent of angiotensin. J Am Heart Assoc. 2017;6:e006120.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miyazaki T, Nakajima W, Hatano M, Shibata Y, Kuroki Y, Arisawa T, et al. Visualization of AMPA receptors in living human brain with positron emission tomography. Nat Med. 2020;26:281–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi R, Wakui H, Azushima K, Uneda K, Haku S, Ohki K, et al. An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int. 2017;91:1115–25.

    Article  CAS  PubMed  Google Scholar 

  26. Nakajima W, Jitsuki S, Sano A, Takahashi T. Sustained enhancement of lateral inhibitory circuit maintains cross modal cortical reorganization. PLoS ONE. 2016;11:e0149068.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yamaji T, Yamashita A, Wakui H, Azushima K, Uneda K, Fujikawa Y, et al. Angiotensin II type 1 receptor-associated protein deficiency attenuates sirtuin1 expression in an immortalised human renal proximal tubule cell line. Sci Rep. 2019;9:16550.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  28. Miyazaki T, Takase K, Nakajima W, Tada H, Ohya D, Sano A, et al. Disrupted cortical function underlies behavior dysfunction due to social isolation. J Clin Investig. 2012;122:2690–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abe E, Yamashita A, Hirota K, Yamaji T, Azushima K, Urate S, et al. Angiotensin II type-1 receptor-associated protein interacts with transferrin receptor-1 and promotes its internalization. Sci Rep. 2022;12:17376.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Dejima T, Tamura K, Wakui H, Maeda A, Ohsawa M, Kanaoka T, et al. Prepubertal angiotensin blockade exerts long-term therapeutic effect through sustained ATRAP activation in salt-sensitive hypertensive rats. J Hypertens. 2011;29:1919–29.

    Article  CAS  PubMed  Google Scholar 

  31. Shigenaga A, Tamura K, Wakui H, Masuda S, Azuma K, Tsurumi-Ikeya Y, et al. Effect of olmesartan on tissue expression balance between angiotensin II receptor and its inhibitory binding molecule. Hypertension. 2008;52:672–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wakui H, Tamura K, Matsuda M, Bai Y, Dejima T, Shigenaga A, et al. Intrarenal suppression of angiotensin II type 1 receptor binding molecule in angiotensin II-infused mice. Am J Physiol Renal Physiol. 2010;299:F991–F1003.

    Article  CAS  PubMed  Google Scholar 

  33. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. Int J Mol Sci. 2018;19:876.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortès C. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol. 1997;18:383–439.

    Article  CAS  PubMed  Google Scholar 

  35. McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, et al. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 2003;35:901–18.

    Article  CAS  PubMed  Google Scholar 

  36. Dupont AG, Brouwers S. Brain angiotensin peptides regulate sympathetic tone and blood pressure. J Hypertens. 2010;28:1599–610.

    Article  CAS  PubMed  Google Scholar 

  37. Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63:572–9.

    Article  CAS  PubMed  Google Scholar 

  38. Cao W, Li A, Wang L, Zhou Z, Su Z, Bin W, et al. A salt-induced reno-cerebral reflex activates renin-angiotensin systems and promotes CKD progression. J Am Soc Nephrol. 2015;26:1619–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao HL, Yu XJ, Hu HB, Yang QW, Liu KL, Chen YM, et al. Apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent ROS generation and cytokines in hypothalamic paraventricular nucleus. Cardiovasc Toxicol. 2021;21:721–36.

    Article  CAS  PubMed  Google Scholar 

  40. Wang HW, Huang BS, White RA, Chen A, Ahmad M, Leenen FH. Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II - induced hypothalamic reactive oxygen species and hypertension. Neuroscience. 2016;329:112–21.

    Article  CAS  PubMed  Google Scholar 

  41. Young CN, Davisson RL. Angiotensin-II, the brain, and hypertension: an update. Hypertension. 2015;66:920–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported with grants from the Yokohama Foundation for Advancement of Medical Science, Uehara Memorial Foundation, Japan Society for the Promotion of Science, Japan Kidney Association-Nippon Boehringer Ingelheim Joint Research Program, Japanese Association of Dialysis Physicians, Salt Science Research Foundation, Strategic Research Project of Yokohama City University, the Japan Agency for Medical Research and Development (AMED), Translational Research Program, Strategic Promotion for Practical Application of Innovative Medical Technology (TR-SPRINT) from AMED, Moriya Scholarship Foundation, Bayer Scholarship for Cardiovascular Research, Mochida Memorial Foundation for Medical and Pharmaceutical Research, and the Yokohama City University research grant “KAMOME Project”.

Author information

Authors and Affiliations

Authors

Contributions

MS, SK, and HW designed and conducted the study. MS, HW, and KA wrote the manuscript. MS, SK, HW, KA, and WN performed the experiments. MS and SK analyzed the data. KF, TM, TT, and KT supervised the study. All authors have approved the final manuscript.

Corresponding authors

Correspondence to Hiromichi Wakui or Kengo Azushima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotozawa, M., Kinguchi, S., Wakui, H. et al. Enhancement of angiotensin II type 1 receptor-associated protein in the paraventricular nucleus suppresses angiotensin II-dependent hypertension. Hypertens Res 47, 67–77 (2024). https://doi.org/10.1038/s41440-023-01480-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01480-y

Keywords

This article is cited by

Search

Quick links