Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Associations between long-term averages of metabolic parameters in adulthood and cardiac structure and function in later life

Abstract

The effects of long-term levels of body mass index (BMI), blood pressure (BP), plasma lipids and fasting blood glucose (FBG) on the cardiac structure and function in later life in general population are to evaluate. We included adult participants without heart failure from Framingham Heart Study. The respective averages over a span of 30–36 years of seven parameters were pooled into linear regression models simultaneously to evaluate their associations with subsequent left atrial internal dimension (LAID), left ventricular mass index (LVMi), internal dimension (LVID), ejection fraction (LVEF), global longitudinal strain (GLS) and mitral inflow velocity to early diastolic mitral annular velocity (E/é). In 1838 participants (56.0% female, mean age 66.1 years), per 1-standard deviation (SD) increment of mean BMI correlated with larger LAID and LVID (β 0.05~0.17, standard error [SE] 0.01 for all), greater LVMi (β [SE], 1.49 [0.46]), worse E/é (β [SE], 0.28 [0.05]). Per 1-SD increment of mean systolic BP correlated with greater LVMi (β [SE], 4.70 [0.69]), LVEF (β [SE], 0.73 [0.24]), E/é (β [SE], 0.52 [0.08]), whereas increase of mean diastolic BP correlated with smaller LVMi (β [SE], −1.61 [0.62]), LVEF (β [SE], −0.46 [0.22]), E/é (β [SE], −0.30 [0.07]). Per 1-SD increment of mean high density lipoprotein cholesterol (HDL-c) correlated with smaller LVID (β [SE], −0.03 [0.01]) and better systolic function (LVEF, β [SE], 0.63 [0.19]; GLS, β [SE], −0.20 [0.10]). The variabilities of BMI, BP and HDL-c also correlated with certain cardiac measurements. In long-term, BMI affected the size and mass of heart chambers, systolic and diastolic BP differently influenced left ventricular mass and function, higher HDL-c linked to better systolic function. Clinical trial registration: URL: https://clinicaltrials.gov. Identifier: NCT00005121.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aijaz B, Ammar KA, Lopez-Jimenez F, Redfield MM, Jacobsen SJ, Rodeheffer RJ. Abnormal cardiac structure and function in the metabolic syndrome: a population-based study. Mayo Clin Proc. 2008;83:1350–7.

    Article  PubMed  Google Scholar 

  2. Fitchett D, Connelly KA. Impaired cardiac function in metabolic syndrome. Can J Cardiol. 2014;30:270–1.

    Article  PubMed  Google Scholar 

  3. Crendal E, Walther G, Dutheil F, Courteix D, Lesourd B, Chapier R, et al. Left ventricular myocardial dyssynchrony is already present in nondiabetic patients with metabolic syndrome. Can J Cardiol. 2014;30:320–4.

    Article  PubMed  Google Scholar 

  4. Reis JP, Allen N, Gibbs BB, Gidding SS, Lee JM, Lewis CE, et al. Association of the degree of adiposity and duration of obesity with measures of cardiac structure and function: the CARDIA study. Obes (Silver Spring). 2014;22:2434–40.

    Article  Google Scholar 

  5. Turkbey EB, McClelland RL, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3:266–74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lauer MS, Anderson KM, Levy D. Influence of contemporary versus 30-year blood pressure levels on left ventricular mass and geometry: the Framingham Heart Study. J Am Coll Cardiol. 1991;18:1287–94.

    Article  CAS  PubMed  Google Scholar 

  7. Kishi S, Teixido-Tura G, Ning H, Venkatesh BA, Wu C, Almeida A, et al. Cumulative blood pressure in early adulthood and cardiac dysfunction in middle age: the cardia study. J Am Coll Cardiol. 2015;65:2679–87.

    Article  PubMed  Google Scholar 

  8. Kosmala W, Sanders P, Marwick TH. Subclinical myocardial impairment in metabolic diseases. JACC Cardiovasc Imaging. 2017;10:692–703.

    Article  PubMed  Google Scholar 

  9. Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ. 2016;354:i4098.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim MK, Han K, Kim H-S, Park Y-M, Kwon H-S, Yoon K-H, et al. Cholesterol variability and the risk of mortality, myocardial infarction, and stroke: a nationwide population-based study. Eur Heart J. 2017;38:3560–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim MK, Han K, Park Y-M, Kwon H-S, Kang G, Yoon K-H, et al. Associations of variability in blood pressure, glucose and cholesterol concentrations, and body mass index with mortality and cardiovascular outcomes in the general population. Circulation. 2018;138:2627–37.

    Article  CAS  PubMed  Google Scholar 

  12. Andersson C, Nayor M, Tsao CW, Levy D, Vasan RS. Framingham Heart Study: JACC focus seminar, 1/8. J Am Coll Cardiol. 2021;77:2680–92.

    Article  PubMed  Google Scholar 

  13. Mena L, Pintos S, Queipo NV, Aizpúrua JA, Maestre G, Sulbarán T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23:505–11.

    Article  CAS  PubMed  Google Scholar 

  14. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.

    Article  PubMed  Google Scholar 

  15. Litwin SE, Adams TD, Davidson LE, McKinlay R, Simper SC, Ranson L, et al. Longitudinal changes in cardiac structure and function in severe obesity: 11-year follow-up in the Utah Obesity Study. J Am Heart Assoc. 2020;9:e014542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6:701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124:1598–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carter AR, Santos Ferreira DL, Taylor AE, Lawlor DA, Davey Smith G, Sattar N, et al. Role of the metabolic profile in mediating the relationship between body mass index and left ventricular mass in adolescents: analysis of a prospective cohort study. J Am Heart Assoc. 2020;9:e016564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teramoto K, Nadruz Junior W, Matsushita K, Claggett B, John JE, Skali H, et al. Mid- to late-life time-averaged cumulative blood pressure and late-life cardiac structure, function, and heart failure. Hypertension. 2020;76:808–18.

    Article  CAS  PubMed  Google Scholar 

  20. Tisdale RL, Haddad F, Kohsaka S, Heidenreich PA. Trends in left ventricular ejection fraction for patients with a new diagnosis of heart failure. Circ Heart Fail. 2020;13:e006743.

    Article  PubMed  Google Scholar 

  21. Slimani A, Melchior J, de Meester C, Pierard S, Roy C, Amzulescu M, et al. Relative contribution of afterload and interstitial fibrosis to myocardial function in severe aortic stenosis. JACC Cardiovasc Imaging. 2020;13:589–600.

    Article  PubMed  Google Scholar 

  22. Kuznetsova T, Thijs L, Knez J, Cauwenberghs N, Petit T, Gu Y-M, et al. Longitudinal changes in left ventricular diastolic function in a general population. Circ Cardiovasc Imaging. 2015;8:e002882.

    Article  PubMed  Google Scholar 

  23. Tran AH, Flynn JT, Becker RC, Daniels SR, Falkner BE, Ferguson M, et al. Subclinical systolic and diastolic dysfunction is evident in youth with elevated blood pressure. Hypertension. 2020;75:1551–6.

    Article  CAS  PubMed  Google Scholar 

  24. Pownall HJ, Rosales C, Gillard BK, Gotto AM. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol. 2021;18:712–23.

    Article  CAS  PubMed  Google Scholar 

  25. De Geest B, Mishra M. Role of high-density lipoproteins in cardioprotection and in reverse remodeling: therapeutic implications. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866:159022.

    Article  PubMed  Google Scholar 

  26. Kiya Y, Miura S-I, Imaizumi S, Uehara Y, Matsuo Y, Abe S, et al. Reconstituted high-density lipoprotein attenuates postinfarction left ventricular remodeling in rats. Atherosclerosis. 2009;203:137–44.

    Article  CAS  PubMed  Google Scholar 

  27. Van Linthout S, Spillmann F, Lorenz M, Meloni M, Jacobs F, Egorova M, et al. Vascular-protective effects of high-density lipoprotein include the downregulation of the angiotensin II type 1 receptor. Hypertension. 2009;53:682–7.

    Article  PubMed  Google Scholar 

  28. Amin R, Muthuramu I, Aboumsallem JP, Mishra M, Jacobs F, De, et al. Selective HDL-raising human Apo A-I gene therapy counteracts cardiac hypertrophy, reduces myocardial fibrosis, and improves cardiac function in mice with chronic pressure overload. Int J Mol Sci. 2017;18:E2012.

    Article  Google Scholar 

  29. Mortensen MB, Nordestgaard BG. Elevated LDL cholesterol and increased risk of myocardial infarction and atherosclerotic cardiovascular disease in individuals aged 70–100 years: a contemporary primary prevention cohort. Lancet. 2020;396:1644–52.

    Article  CAS  PubMed  Google Scholar 

  30. Lopes FG, Bottino DA, Oliveira FJ, Mecenas AS, Clapauch R, Bouskela E. In elderly women moderate hypercholesterolemia is associated to endothelial and microcirculatory impairments. Microvasc Res. 2013;85:99–103.

    Article  CAS  PubMed  Google Scholar 

  31. Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101:2271–6.

    Article  CAS  PubMed  Google Scholar 

  32. Demmer RT, Allison MA, Cai J, Kaplan RC, Desai AA, Hurwitz BE, et al. Association of impaired glucose regulation and insulin resistance with cardiac structure and function: results from ECHO-SOL (Echocardiographic Study of Latinos). Circ Cardiovasc Imaging. 2016;9:e005032.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Horwich TB, Fonarow GC. Glucose, obesity, metabolic syndrome, and diabetes relevance to incidence of heart failure. J Am Coll Cardiol. 2010;55:283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: Part I: general concepts. Circulation. 2002;105:1727–33.

    Article  CAS  PubMed  Google Scholar 

  35. Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation. 2003;107:448–54.

    Article  CAS  PubMed  Google Scholar 

  36. Murphy E, Amanakis G, Fillmore N, Parks RJ, Sun J. Sex differences in metabolic cardiomyopathy. Cardiovasc Res. 2017;113:370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Camper-Kirby D, Welch S, Walker A, Shiraishi I, Setchell KD, Schaefer E, et al. Myocardial Akt activation and gender: increased nuclear activity in females versus males. Circ Res. 2001;88:1020–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kwon S, Lee S-R, Choi E-K, Lee S-H, Han K-D, Lee S-Y, et al. Visit-to-visit variability of metabolic parameters and risk of heart failure: a nationwide population-based study. Int J Cardiol. 2019;293:153–8.

    Article  PubMed  Google Scholar 

  39. Mahajan R, Stokes M, Elliott A, Munawar DA, Khokhar KB, Thiyagarajah A, et al. Complex interaction of obesity, intentional weight loss and heart failure: a systematic review and meta-analysis. Heart. 2020;106:58–68.

    Article  PubMed  Google Scholar 

  40. Shah RV, Murthy VL, Abbasi SA, Eng J, Wu C, Ouyang P, et al. Weight loss and progressive left ventricular remodelling: The Multi-Ethnic Study of Atherosclerosis (MESA). Eur J Prev Cardiol. 2015;22:1408–18.

    Article  PubMed  Google Scholar 

  41. Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail. 2013;1:93–102.

    Article  PubMed  Google Scholar 

  42. Nwabuo CC, Yano Y, Moreira HT, Appiah D, Vasconcellos HD, Aghaji QN, et al. Association between visit-to-visit blood pressure variability in early adulthood and myocardial structure and function in later life. JAMA Cardiol. 2020;5:795–801.

    Article  PubMed  Google Scholar 

  43. Lee S-R, Choi E-K, Han K-D, Lee S-H, Oh S. Effect of the variability of blood pressure, glucose level, total cholesterol level, and body mass index on the risk of atrial fibrillation in a healthy population. Heart Rhythm. 2020;17:12–9.

    Article  PubMed  Google Scholar 

  44. Shah AM, Claggett B, Folsom AR, Lutsey PL, Ballantyne CM, Heiss G, et al. Ideal cardiovascular health during adult life and cardiovascular structure and function among the elderly. Circulation. 2015;132:1979–89.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maher GM, Ryan L, McCarthy FP, Hughes A, Park C, Fraser A, et al. Puberty timing and markers of cardiovascular structure and function at 25 years: a prospective cohort study. BMC Med. 2021;19:78.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the participants, investigators, research coordinators and committee members of the Framingham Heart Study.

Funding

This study was funded by the National Natural Science Foundation of China (81800344, 81800345, and 82000372), Guangdong Natural Science Foundation (2022A1515111120, 2020A1515010452, and 2020A1515011095).

Author information

Authors and Affiliations

Authors

Contributions

Under the direction of BD and MC, YW and CC performed the study design, data extraction, and statistical analysis. YW wrote the original draft, while BD and MC revised the draft. All other authors checked the data to ensure accuracy and edited the manuscript prior to submission to ensure the standard English grammar.

Corresponding authors

Correspondence to Manting Choy or Bin Dong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, C., Wei, Ff. et al. Associations between long-term averages of metabolic parameters in adulthood and cardiac structure and function in later life. Hypertens Res 47, 496–506 (2024). https://doi.org/10.1038/s41440-023-01475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01475-9

Keywords

This article is cited by

Search

Quick links