Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

White blood cell and platelet distribution widths are associated with hypertension: data mining approaches

A Comment to this article was published on 24 November 2023

Abstract

In this paper, we are going to investigate the association between Hypertension (HTN) and routine hematologic indices in a cohort of Iranian adults. The data were obtained from a total population of 9704 who were aged 35–65 years, a prospective study was designed. The association between hematologic factors and HTN was assessed using logistic regression (LR) analysis and a decision tree (DT) algorithm. A total of 9704 complete datasets were analyzed in this cohort study (N = 3070 with HTN [female 62.47% and male 37.52%], N = 6634 without HTN [female 58.90% and male 41.09%]). Several variables were significantly different between the two groups, including age, smoking status, BMI, diabetes millitus, high sensitivity C-reactive protein (hs-CRP), uric acid, FBS, total cholesterol, HGB, LYM, WBC, PDW, RDW, RBC, sex, PLT, MCV, SBP, DBP, BUN, and HCT (P < 0.05). For unit odds ratio (OR) interpretation, females are more likely to have HTN (OR = 1.837, 95% CI = (1.620, 2.081)). Among the analyzed variables, age and WBC had the most significant associations with HTN OR = 1.087, 95% CI = (1.081, 1.094) and OR = 1.096, 95% CI = (1.061, 1.133), respectively (P-value < 0.05). In the DT model, age, followed by WBC, sex, and PDW, has the most significant impact on the HTN risk. Ninety-eight percent of patients had HTN in the subgroup with older age (≥58), high PDW (≥17.3), and low RDW (<46). Finally, we found that elevated WBC and PDW are the most associated factor with the severity of HTN in the Mashhad general population as well as female gender and older age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3: ROC curve of LR and DT models.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94.

    Article  Google Scholar 

  2. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88.

    Article  Google Scholar 

  3. Tayefi M, Shabani N, Saberi-Karimian M, Oladi M, Mouhebati M, Farjami Z, et al. Systolic and diastolic blood pressure percentiles by age and gender in Northeastern Iran. J Am Soc Hypertens. 2018;12:e85–91.

    Article  PubMed  Google Scholar 

  4. Flack JM, Adekola B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc Med. 2020;30:160–4.

    Article  PubMed  Google Scholar 

  5. Aghasizadeh M, Samadi S, Sahebkar A, Miri‐Moghaddam E, Esmaily H, Souktanloo M, et al. Serum HDL cholesterol uptake capacity in subjects from the MASHAD cohort study: Its value in determining the risk of cardiovascular endpoints. J Clin Lab Anal. 2021;35:e23770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fakhri M, Sarokhani D, Ghiasi B, Dehkordi AH. Prevalence of hypertension in cardiovascular disease in iran: systematic review and meta-analysis. Int J Prev Med. 2020;11:56.

    PubMed  PubMed Central  Google Scholar 

  7. Shrestha PL, Shrestha PA, Vivo RP. Epidemiology of comorbidities in patients with hypertension. Curr Opin Cardiol. 2016;31:376–80.

    Article  PubMed  Google Scholar 

  8. Aghasizadeh M, Bizhaem SK, Baniasadi M, Khazdair MR, Kazemi T. Evaluation of LDL goal achievement in statin consumption, south east of Iran. Sci Rep. 2021;11:1–8.

    Article  Google Scholar 

  9. Ishida S, Kondo S, Funakoshi S, Satoh A, Maeda T, Kawazoe M, et al. White blood cell count and incidence of hypertension in the general Japanese population: ISSA-CKD study. PLoS One. 2021;16:e0246304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jeong HR, Shim YS, Lee HS, Hwang JS. Hemoglobin and hematocrit levels are positively associated with blood pressure in children and adolescents 10 to 18 years old. Sci Rep. 2021;11:19052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kim NH, Lee JM, Kim HC, Lee JY, Yeom H, Lee JH, et al. Cross-sectional and longitudinal association between hemoglobin concentration and hypertension: a population-based cohort study. Medicine. 2016;95:e5041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lee SG, Rim JH, Kim JH. Association of hemoglobin levels with blood pressure and hypertension in a large population-based study: the Korea National Health and Nutrition Examination Surveys 2008-2011. Clin Chim Acta. 2015;438:12–8.

    Article  PubMed  CAS  Google Scholar 

  13. Atsma F, Veldhuizen I, de Kort W, van Kraaij M, Pasker-de Jong P, Deinum J. Hemoglobin level is positively associated with blood pressure in a large cohort of healthy individuals. Hypertension. 2012;60:936–41.

    Article  PubMed  CAS  Google Scholar 

  14. Liu X, Liang J, Qiu Q, Zhu Y, Sun Y, Ying P, et al. Association of hematocrit and pre-hypertension among Chinese adults: the CRC study. Cell Biochem Biophys. 2015;71:1123–8.

    Article  PubMed  CAS  Google Scholar 

  15. Paul L, Jeemon P, Hewitt J, McCallum L, Higgins P, Walters M, et al. Hematocrit predicts long-term mortality in a nonlinear and sex-specific manner in hypertensive adults. Hypertension. 2012;60:631–8.

    Article  PubMed  CAS  Google Scholar 

  16. Pusuroglu H, Akgul O, Erturk M, Surgit O, Tasbulak O, Akkaya E, et al. Red cell distribution width and end-organ damage in patients with systo-diastolic hypertension. Arch Med Sci. 2016;12:319–25.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Emamian M, Hasanian SM, Tayefi M, Bijari M, Movahedian Far F, Shafiee M, et al. Association of hematocrit with blood pressure and hypertension. J Clin Lab Anal. 2017;31:e22124.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Merad-Boudia HN, Dali-Sahi M, Kachekouche Y, Dennouni-Medjati N. Hematologic disorders during essential hypertension. Diabetes Metab Syndr. 2019;13:1575–9.

    Article  PubMed  Google Scholar 

  19. Gang L, Yanyan Z, Zhongwei Z, Juan D. Association between mean platelet volume and hypertension incidence. Hypertens Res. 2017;40:779–84.

    Article  PubMed  Google Scholar 

  20. Pusuroglu H, Cizgici AY, Demir AR, Uygur B, Ozal E. Long-term prognostic value of mean platelet volume in patients with hypertension. Acta Cardiol Sin. 2021;37:504–11.

    PubMed  PubMed Central  Google Scholar 

  21. Akın H, Bilge Ö, Yavuz B, Özkan S, Işık F. The relationship between mean platelet volume and resistant hypertension. Clin Exp Hypertens. 2022;44:228–32.

    Article  PubMed  Google Scholar 

  22. Zhan YL, Zou B, Kang T, Xiong LB, Zou J, Wei YF. Multiplicative interaction between mean corpuscular volume and red cell distribution width with target organ damage in hypertensive patients. J Clin Lab Anal. 2017;31:e22082.

    Article  PubMed  Google Scholar 

  23. Lin S, Zhang L, Shen S, Wei D, Lu J, Chen X, et al. Platelet parameters and risk of hypertension disorders of pregnancy: a propensity score adjusted analysis. Platelets. 2022;33:543–50.

    Article  PubMed  CAS  Google Scholar 

  24. Li T, Jin J, Meng Z, Zhang W, Li Y, Yu X, et al. The different associations between platelet distribution width and hypertension subtypes in males and females. Biosci Rep. 2020;40:BSR20201747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Anderson GH. Effect of age on hypertension: analysis of over 4,800 referred hypertensive patients. Saudi J Kidney Dis Transplant. 1999;10:286.

    CAS  Google Scholar 

  26. McEniery CM, Wilkinson IB, Avolio AP. Age, hypertension and arterial function. Clin Exp Pharmacol Physiol. 2007;34:665–71.

    Article  PubMed  CAS  Google Scholar 

  27. Gillis EE, Sullivan JC. Sex differences in hypertension: recent advances. Hypertension. 2016;68:1322–7.

    Article  PubMed  CAS  Google Scholar 

  28. Connelly PJ, Currie G, Delles C. Sex differences in the prevalence, outcomes and management of hypertension. Curr Hypertens Rep. 2022;24:185–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gilstrap LG, Wang TJ. Biomarkers and cardiovascular risk assessment for primary prevention: an update. Clin Chem. 2012;58:72–82.

    Article  PubMed  CAS  Google Scholar 

  30. den Engelsen C, Koekkoek PS, Gorter KJ, van den Donk M, Salomé PL, Rutten GE. High-sensitivity C-reactive protein to detect metabolic syndrome in a centrally obese population: a cross-sectional analysis. Cardiovasc Diabetol. 2012;11:1–7.

    Google Scholar 

  31. Shah T, Newcombe P, Smeeth L, Addo J, Casas JP, Whittaker J, et al. Ancestry as a determinant of mean population C-reactive protein values: implications for cardiovascular risk prediction. Circulation. 2010;3:436–44.

    PubMed  CAS  Google Scholar 

  32. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saberi‐Karimian M, Safarian‐Bana H, Mohammadzadeh E, Kazemi T, Mansoori A, Ghazizadeh H, et al. A pilot study of the effects of crocin on high‐density lipoprotein cholesterol uptake capacity in patients with metabolic syndrome: a randomized clinical trial. BioFactors. 2021;47:1032–41.

    Article  PubMed  Google Scholar 

  34. Mahesh B. Machine learning algorithms -a review. International Journal of Science and Research. 2020;9:381–6.

    Google Scholar 

  35. Ghayour-Mobarhan M, Moohebati M, Esmaily H, Ebrahimi M, Parizadeh SMR, Heidari-Bakavoli AR, et al. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk estimation. Int J Public Health. 2015;60:561–72.

    Article  PubMed  Google Scholar 

  36. Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2013.

  37. Hooley JM, Teasdale JD. Predictors of relapse in unipolar depressives: expressed emotion, marital distress, and perceived criticism. J Abnorm Psychol. 1989;98:229.

    Article  PubMed  CAS  Google Scholar 

  38. Mohammadi F, Pourzamani H, Karimi H, Mohammadi M, Mohammadi M, Ardalan N, et al. Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran. Biomed J. 2021;44:304–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Saberi-Karimian M, Khorasanchi Z, Ghazizadeh H, Tayefi M, Saffar S, Ferns GA, et al. Potential value and impact of data mining and machine learning in clinical diagnostics. Crit Rev Clin Lab Sci. 2021;58:275–96.

    Article  PubMed  Google Scholar 

  40. Mohammadi M, Mansoori A. A projection neural network for identifying copy number variants. IEEE J Biomed health Inform. 2018;23:2182–8.

    Article  PubMed  Google Scholar 

  41. The analysis of cases based on decision tree. In Zhong Y, editor. 7th IEEE international conference on software engineering and service science (ICSESS). Beijing: IEEE; 2016.

  42. Mansoori A, Sahranavard T, Hosseini ZS, Soflaei SS, Emrani N, Nazar E, et al. Prediction of type 2 diabetes mellitus using hematological factors based on machine learning approaches: a cohort study analysis. Sci Rep. 2023;13:1–11.

    Article  Google Scholar 

  43. Saberi‐Karimian M, Mansoori A, Bajgiran MM, Hosseini ZS, Kiyoumarsioskouei A, Rad ES, et al. Data mining approaches for type 2 diabetes mellitus prediction using anthropometric measurements. J Clin Lab Anal. 2023;37:e24798.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mansoori A, Hosseini ZS, Ahari RK, Poudineh M, Rad ES, Zo MM, et al. Development of data mining algorithms for identifying the best anthropometric predictors for cardiovascular disease: MASHAD cohort study. High Blood Press Cardiovasc Prev. 2023;30:243–53.

    Article  PubMed  Google Scholar 

  45. Ghazizadeh H, Shakour N, Ghoflchi S, Mansoori A, Saberi-Karimiam M, Rashidmayvan M, et al. Use of data mining approaches to explore the association between type 2 diabetes mellitus with SARS-CoV-2. BMC Pulm Med. 2023;23:1–14.

    Article  Google Scholar 

  46. Wu S, Jin C, Li S, Zheng X, Zhang X, Cui L, et al. Aging, arterial stiffness, and blood pressure association in chinese adults. Hypertension. 2019;73:893–9.

    Article  PubMed  CAS  Google Scholar 

  47. Zheng M, Xu X, Wang X, Huo Y, Xu X, Qin X, et al. Age, arterial stiffness, and components of blood pressure in Chinese adults. Medicine. 2014;93:e262.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rockwood MR, Howlett SE. Blood pressure in relation to age and frailty. Can Geriatrics J. 2011;14:2.

    Article  Google Scholar 

  49. Franklin SS. Ageing and hypertension: the assessment of blood pressure indices in predicting coronary heart disease. J Hypertens Suppl. 1999;17:S29–36.

    PubMed  CAS  Google Scholar 

  50. Gu Q, Burt VL, Paulose-Ram R, Dillon CF. Gender differences in hypertension treatment, drug utilization patterns, and blood pressure control among US adults with hypertension: data from the National Health and Nutrition Examination Survey 1999–2004. Am J Hypertens. 2008;21:789–98.

    Article  PubMed  Google Scholar 

  51. Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, et al. Status of hypertension in china: results from the China Hypertension Survey, 2012-2015. Circulation 2018;137:2344–56.

    Article  PubMed  Google Scholar 

  52. Ramirez LA, Sullivan JC. Sex differences in hypertension: where we have been and where we are going. Am J Hypertens. 2018;31:1247–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lloyd-Jones DM, Evans JC, Levy D. Hypertension in adults across the age spectrum: current outcomes and control in the community. JAMA. 2005;294:466–72.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang Y, Moran AE. Trends in the prevalence, awareness, treatment, and control of hypertension among young adults in the United States, 1999 to 2014. Hypertension. 2017;70:736–42.

    Article  PubMed  CAS  Google Scholar 

  55. Guo X, Zou L, Zhang X, Li J, Zheng L, Sun Z, et al. Prehypertension: a meta-analysis of the epidemiology, risk factors, and predictors of progression. Tex Heart Inst J. 2011;38:643–52.

    PubMed  PubMed Central  Google Scholar 

  56. Ndzie Noah ML, Adzika GK, Mprah R, Adekunle AO, Adu-Amankwaah J, Sun H. Sex-gender disparities in cardiovascular diseases: the effects of estrogen on eNOS, lipid profile, and NFATs during catecholamine stress. Front Cardiovasc Med. 2021;8:639946.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shankar A, Klein BE, Klein R. Relationship between white blood cell count and incident hypertension. Am J Hypertens. 2004;17:233–9.

    Article  PubMed  Google Scholar 

  58. Friedman GD, Selby JV, Quesenberry CP Jr. The leukocyte count: a predictor of hypertension. J Clin Epidemiol. 1990;43:907–11.

    Article  PubMed  CAS  Google Scholar 

  59. Idler EL, Angel RJ. Self-rated health and mortality in the NHANES-I Epidemiologic Follow-up Study. Am J Public Health. 1990;80:446–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Orakzai R, Orakzai S, Nasir K, Santos R, Rana J, Pimentel I, et al. Association of white blood cell count with systolic blood pressure within the normotensive range. J Hum Hypertens. 2006;20:341–7.

    Article  PubMed  CAS  Google Scholar 

  61. Karthikeyan V, Lip G. White blood cell count and hypertension. J Hum Hypertens. 2006;20:310–2.

    Article  PubMed  CAS  Google Scholar 

  62. Curiati MNC, Silvestre OM, Pires LJT, Mangini S, Pires PV, Gaiotto FA, et al. Agreement of BNP and NT-proBNP and the influence of clinical and laboratory variables. Einstein. 2013;11:273–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cheema AN, Khan DA, Tuyyab F. Early detection of cardiac dysfunction by BNP in beta-thalassaemia major patients. Acta Cardiologica. 2012;67:331–5.

    Article  PubMed  Google Scholar 

  64. Palazzuoli A, Quatrini I, Calabrò A, Antonelli G, Caputo M, Campagna MS, et al. Anemia correction by erythropoietin reduces BNP levels, hospitalization rate, and NYHA class in patients with cardio-renal anemia syndrome. Clin Exp Med. 2011;11:43–8.

    Article  PubMed  CAS  Google Scholar 

  65. Takeda T, Kohno M. Brain natriuretic peptide in hypertension. Hypertens Res. 1995;18:259–66.

    Article  PubMed  CAS  Google Scholar 

  66. Casserly B, Klinger JR. Brain natriuretic peptide in pulmonary arterial hypertension: biomarker and potential therapeutic agent. Drug Des Dev Ther. 2009;3:269.

    CAS  Google Scholar 

  67. Jae SY, Kurl S, Laukkanen JA, Heffernan KS, Choo J, Choi Y-H, et al. Higher blood hematocrit predicts hypertension in men. J Hypertens. 2014;32:245–50.

    Article  PubMed  CAS  Google Scholar 

  68. Tripolino C, Gnasso A, Carallo C, Scavelli FB, Irace C. Hemorheological profiles of subjects with prehypertension. Hypertens Res. 2016;39:519–23.

    Article  PubMed  CAS  Google Scholar 

  69. Divya R, Ashok V. A study of hematological parameters and anthropometric indicators in hypertensive and normotensive males. Int J Curr Res Rev. 2016;8:6.

    CAS  Google Scholar 

  70. Babu KR, Solepure A, Shaikh R. Comparison of hematological parameters in primary hypertensives and normotensives of sangareddy. Int J Biomed Res. 2015;6:309–15.

    Article  Google Scholar 

  71. Karabulut A, Karadag A. Clinical implication of hematological indices in the essential hypertension. World J Hypertens. 2015;5:93–7.

    Article  Google Scholar 

  72. Cirillo M, Laurenzi M, Trevisan M, Stamler J. Hematocrit, blood pressure, and hypertension. The Gubbio Population Study. Hypertension. 1992;20:319–26.

    Article  PubMed  CAS  Google Scholar 

  73. Al-Muhana F, Larbi E, Al-Ali A, Al-Sultan A, Al-Ateeeq S, Soweilem L, et al. Haematological, lipid profile and other biochemical parameters in normal and hypertensive subjects among the population of the eastern province of Saudi Arabia. East Afr Med J. 2006;83:44–8.

    PubMed  CAS  Google Scholar 

  74. Ighoroje A, Dapper D. Sex variations in the haemorheological parameters of some hypertensive Nigerians as compared to hypertensive. Niger J Physiological Sci. 2005;20:33–8.

    CAS  Google Scholar 

  75. Bruschi G, Minari M, Bruschi ME, Tacinelli L, Milani B, Cavatorta A, et al. Similarities of essential and spontaneous hypertension. Volume and number of blood cells. Hypertension. 1986;8:983–9.

    Article  PubMed  CAS  Google Scholar 

  76. Postnov YV, Kravtsov GM, Orlov S, Pokudin N, Postnov IY, Kotelevtsev YV. Effect of protein kinase C activation on cytoskeleton and cation transport in human erythrocytes. Reproduction of some membrane abnormalities revealed in essential hypertension. Hypertension. 1988;12:267–73.

    Article  PubMed  CAS  Google Scholar 

  77. Sharp DS, Curb JD, Schatz IJ, Meiselman HJ, Fisher TC, Burchfiel CM, et al. Mean red cell volume as a correlate of blood pressure. Circulation. 1996;93:1677–84.

    Article  PubMed  CAS  Google Scholar 

  78. Enawgaw B, Adane N, Terefe B, Asrie F, Melku M. A comparative cross-sectional study of some hematological parameters of hypertensive and normotensive individuals at the university of Gondar hospital, Northwest Ethiopia. BMC Hematol. 2017;17:1–7.

    Article  Google Scholar 

  79. Gunebakmaz O, Kaya MG, Duran M, Akpek M, Elcik D, Eryol NK. Red blood cell distribution width in ‘non-dippers’ versus ‘dippers’. Cardiology. 2012;123:154–9.

    Article  PubMed  Google Scholar 

  80. Enawgaw B, Adane N, Terefe B, Asrie F, Melku M. A comparative cross-sectional study of some hematological parameters of hypertensive and normotensive individuals at the university of Gondar hospital, Northwest Ethiopia. BMC Hematol. 2017;17:21.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sileshi B, Urgessa F, Wordofa M. A comparative study of hematological parameters between hypertensive and normotensive individuals in Harar, eastern Ethiopia. PLoS One. 2021;16:e0260751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Li N, Zhou H, Tang Q. Red blood cell distribution width: a novel predictive indicator for cardiovascular and cerebrovascular diseases. Dis Markers. 2017;2017:7089493.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fornal M, Wizner B, Cwynar M, Królczyk J, Kwater A, Korbut RA, et al. Association of red blood cell distribution width, inflammation markers and morphological as well as rheological erythrocyte parameters with target organ damage in hypertension. Clin Hemorheol Microcirc. 2014;56:325–35.

    Article  PubMed  CAS  Google Scholar 

  84. Farhangi MA, Keshavarz S-A, Eshraghian M, Ostadrahimi A, Saboor-Yaraghi A-A. White blood cell count in women: relation to inflammatory biomarkers, haematological profiles, visceral adiposity, and other cardiovascular risk factors. J Health Popul Nutr. 2013;31:58.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ozcan F, Turak O, Durak A, Işleyen A, Uçar F, Giniş Z, et al. Red cell distribution width and inflammation in patients with non-dipper hypertension. Blood Press. 2013;22:80–5.

    Article  PubMed  Google Scholar 

  86. Abul Y, Ozsu S, Korkmaz A, Bulbul Y, Orem A, Ozlu T. Red cell distribution width: a new predictor for chronic thromboembolic pulmonary hypertension after pulmonary embolism. Chron Respir Dis. 2014;11:73–81.

    Article  PubMed  Google Scholar 

  87. Tonelli M, Sacks F, Arnold M, Moye L, Davis B, Pfeffer M. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation. 2008;117:163–8.

    Article  PubMed  Google Scholar 

  88. Ates I, Bulut M, Ozkayar N, Dede F. Association between high platelet indices and proteinuria in patients with hypertension. Ann Lab Med. 2015;35:630–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lande K, Os I, Kjeldsen SE, Westheim A, Hjermann I, Eide I, et al. Increased platelet size and release reaction in essential hypertension. J Hypertens. 1987;5:401–6.

    Article  PubMed  CAS  Google Scholar 

  90. Yaghoubi A, Golmohamadi Z, Alizadehasl A, Azarfarin R. Role of platelet parameters and haematological indices in myocardial infarction and unstable angina. J Pak Med Assoc. 2013;63:1133–7.

    PubMed  Google Scholar 

  91. Lee KW, Blann AD, Lip GY. High pulse pressure and nondipping circadian blood pressure in patients with coronary artery disease: relationship to thrombogenesis and endothelial damage/dysfunction. Am J Hypertens. 2005;18:104–15.

    Article  PubMed  Google Scholar 

  92. Boos CJ, Beevers GD, Lip GY. Assessment of platelet activation indices using the ADVIATM 120 amongst ‘high‐risk’patients with hypertension. Ann Med. 2007;39:72–8.

    Article  PubMed  Google Scholar 

  93. Bae MH, Lee JH, Yang DH, Park HS, Cho Y, Chae SC. White blood cell, hemoglobin and platelet distribution width as short-term prognostic markers in patients with acute myocardial infarction. J Korean Med Sci. 2014;29:519–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bekler A, Ozkan MTA, Tenekecioglu E, Gazi E, Yener AU, Temiz A, et al. Increased platelet distribution width is associated with severity of coronary artery disease in patients with acute coronary syndrome. Angiology. 2015;66:638–43.

    Article  PubMed  Google Scholar 

  95. Varol E, Akcay S, Icli A, Yucel H, Ozkan E, Erdogan D, et al. Mean platelet volume in patients with prehypertension and hypertension. Clin Hemorheol Microcirc. 2010;45:67–72.

    Article  PubMed  Google Scholar 

  96. Leow MK-S. Environmental origins of hypertension: phylogeny, ontogeny and epigenetics. Hypertens Res. 2015;38:299–307.

    Article  PubMed  Google Scholar 

  97. Siebers R, Maling T. Mean platelet volume in human essential hypertension. J Hum Hypertens. 1995;9:207.

    PubMed  CAS  Google Scholar 

  98. Ahmadzadeh J, Mansorian B, Attari MM-A, Mohebbi I, Naz-Avar R, Moghadam K, et al. The association between hematological parameters and metabolic syndrome in Iranian men: a single center large-scale study. Diabetes Metab Syndrome Clin Res Rev. 2018;12:17–21.

    Article  Google Scholar 

  99. Chul Sung K, Suh JY, Kim BS, Kang JH, Kim H, Lee MH, et al. High sensitivity C-reactive protein as an independent risk factor for essential hypertension. Am J Hypertens. 2003;16:429–33.

    Article  Google Scholar 

  100. Fujii M, Ohnishi H, Saitoh S, Akasaka H, Miura T, Mori M. The combination of abdominal obesity and high-sensitivity C-reactive protein predicts new-onset hypertension in the general Japanese population: the Tanno–Sobetsu study. Hypertens Res. 2015;38:426–32.

    Article  PubMed  CAS  Google Scholar 

  101. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290:2945–51.

    Article  PubMed  CAS  Google Scholar 

  102. Tangvarasittichai S, Pingmuanglaew P, Tangvarasittichai O. Association of Elevated Serum Lipoprotein (a), inflammation, oxidative stress and chronic kidney disease with hypertension in non-diabetes hypertensive patients. Indian J Clin Biochem. 2016;31:446–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Niskanen L, Laaksonen DE, Nyyssönen K, Punnonen K, Valkonen V-P, Fuentes R, et al. Inflammation, abdominal obesity, and smoking as predictors of hypertension. Hypertension. 2004;44:859–65.

    Article  PubMed  CAS  Google Scholar 

  104. Verma S, Wang C-H, Li S-H, Dumont AS, Fedak PW, Badiwala MV, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–9.

    Article  PubMed  CAS  Google Scholar 

  105. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 2002;106:1439–41.

    Article  PubMed  CAS  Google Scholar 

  106. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation. 2003;107:398–404.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of the data collection team and the individuals who participated in this study.

Author information

Authors and Affiliations

Authors

Contributions

AM: conception, data analyzing. NSFG: conception, drafting the article. LE: revising the article. MP: drafting the article. RKA: drafting the article. FM: drafting the article. MA: revising the article. ESR: drafting the article. GF: revising the article. HE: corresponding author. MG-M: corresponding author.

Corresponding authors

Correspondence to Habibollah Esmaily or Majid Ghayour Mobarhan.

Ethics declarations

Ethics approval and consent to participate

The study protocol was reviewed and all methods are approved by the Ethics Committee of MUMS with approval number IR.MUMS.REC.1386.250. All methods were carried out in accordance with relevant guidelines and regulations. All the participants consented to take part in the study by signing written informed consent. Informed consent was obtained from all subjects using protocols approved by the Ethics Committee of the Mashhad University of Medical Science (MUMS), approval number IR.MUMS.REC.1386.250. All experiments were performed in accordance with relevant guidelines and regulations.

Consent to publication

It is not applicable to the Consent of Image Publication for this manuscript. The figures were designed only in this manuscript for presenting the results of the current paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoori, A., Farizani Gohari, N.S., Etemad, L. et al. White blood cell and platelet distribution widths are associated with hypertension: data mining approaches. Hypertens Res 47, 515–528 (2024). https://doi.org/10.1038/s41440-023-01472-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01472-y

Keywords

This article is cited by

Search

Quick links