Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Pretreatment body mass index affects achievement of target blood pressure with sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease

Abstract

Sodium-glucose cotransporter 2 inhibitor (SGLT2-I) shows excellent antihypertensive effects in addition to its hypoglycemic effects. However, whether body mass index (BMI) affects the antihypertensive effect of SGLT2-I remains unknown. We investigated the impact of baseline BMI on the achievement of target blood pressure (BP) with SGLT2-I treatment in Japanese patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). We retrospectively evaluated 447 Japanese patients with T2DM and CKD treated with SGLT2-I for at least 1 year. The primary outcome was achieving the target BP (<130/80 mmHg) after SGLT2-I treatment. Patients were divided into two groups according to a baseline BMI of 29.1 determined by receiver operating characteristic analysis and analyzed in a cohort model with propensity score matching. In each group, 130 patients were compared by propensity score matching. The target BP achievement rate was significantly higher in the BMI < 29.1 group than in the BMI ≥ 29.1 group (34% and 21%, respectively, p = 0.03). The odds ratio for achieving the target BP in the BMI ≥ 29.1 group was 0.50 (95% confidence interval, 0.28–0.90, p = 0.02). The BMI < 29.1 group had significantly lower systolic and diastolic BPs after SGLT2-I treatment than the BMI ≥ 29.1 group. Only the BMI < 29.1 group was showed a significant decrease in the logarithmic albumin-to-creatinine ratio from baseline after SGLT2-I treatment. In patients with T2DM and CKD, baseline BMI was associated with the antihypertensive effects of SGLT2-I. Patients in the lower baseline BMI group were more likely to achieve the target BP after SGLT2-I treatment.

Pretreatment BMI affects the antihypertensice effect of SGLT2 inhibirors in patients with T2DM and CKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available from the Kanagawa Physicians Association Data Access/Ethics Committee for investigators, bound by confidentiality agreements. Contact details: Kazuo Kobayashi MD/PhD, Kanagawa Physicians Association, 3-1Fujimicho naka-ku, Yokohama City, Kanagawa Prefecture, Japan E-mail: k-taishi@xc4.so-net.ne.jp.

References

  1. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res. 2015;12:78–89. https://doi.org/10.1177/1479164114561992.

    Article  CAS  PubMed  Google Scholar 

  2. Iglay K, Hannachi H, Joseph Howie P, Xu J, Li X, Engel SS, et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32:1243–52. https://doi.org/10.1185/03007995.2016.1168291.

    Article  PubMed  Google Scholar 

  3. Jia G, Sowers JR. Hypertension in diabetes: an update of basic mechanisms and clinical disease. Hypertension. 2021;78:1197–205. https://doi.org/10.1161/hypertensionaha.121.17981.

    Article  CAS  PubMed  Google Scholar 

  4. Tatsumi Y, Ohkubo T. Hypertension with diabetes mellitus: significance from an epidemiological perspective for Japanese. Hypertens Res. 2017;40:795–806. https://doi.org/10.1038/hr.2017.67.

    Article  PubMed  Google Scholar 

  5. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol. 2022;80:2361–71. https://doi.org/10.1016/j.jacc.2022.11.005.

    Article  PubMed  Google Scholar 

  6. Tanaka A, Node K. Hypertension in diabetes care: emerging roles of recent hypoglycemic agents. Hypertens Res. 2021;44:897–905. https://doi.org/10.1038/s41440-021-00665-7.

    Article  PubMed  Google Scholar 

  7. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481. https://doi.org/10.1038/s41440-019-0284-9.

    Article  PubMed  Google Scholar 

  8. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 10. Cardiovascular disease and risk management: standards of care in Diabetes-2023. Diabetes Care. 2023;46:S158–s90. https://doi.org/10.2337/dc23-S010.

    Article  CAS  PubMed  Google Scholar 

  9. Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71:e13–e115. https://doi.org/10.1161/hyp.0000000000000065.

    Article  CAS  PubMed  Google Scholar 

  10. Yokoyama H, Oishi M, Takamura H, Yamasaki K, Shirabe SI, Uchida D, et al. Large-scale survey of rates of achieving targets for blood glucose, blood pressure, and lipids and prevalence of complications in type 2 diabetes (JDDM 40). BMJ Open Diabetes Res Care. 2016;4:e000294. https://doi.org/10.1136/bmjdrc-2016-000294.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mancusi C, de Simone G, Asteggiano R, Richter D, Williams B, Ferrini M. Survey on arterial hypertension management: a report from the ESC Council for Cardiology Practice and the ESC Council on Hypertension. Eur Heart J Open. 2021;1:oeab013 https://doi.org/10.1093/ehjopen/oeab013.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 Diabetes. N Engl J Med. 2015;373:2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  13. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in Type 2 Diabetes. N Engl J Med. 2017;377:644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  14. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in Type 2 diabetes. N Engl J Med. 2019;380:347–57. https://doi.org/10.1056/NEJMoa1812389.

    Article  CAS  PubMed  Google Scholar 

  15. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in Type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306. https://doi.org/10.1056/NEJMoa1811744.

    Article  CAS  PubMed  Google Scholar 

  16. Tsukamoto S, Morita R, Yamada T, Urate S, Azushima K, Uneda K, et al. Cardiovascular and kidney outcomes of combination therapy with sodium-glucose cotransporter-2 inhibitors and mineralocorticoid receptor antagonists in patients with type 2 diabetes and chronic kidney disease: a systematic review and network meta-analysis. Diabetes Res Clin Pract. 2022;194:110161. https://doi.org/10.1016/j.diabres.2022.110161.

    Article  CAS  PubMed  Google Scholar 

  17. Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium Glucose Cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136:1643–58. https://doi.org/10.1161/circulationaha.117.030012.

    Article  CAS  PubMed  Google Scholar 

  18. Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs. 2019;79:219–30. https://doi.org/10.1007/s40265-019-1057-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morita R, Tsukamoto S, Obata S, Yamada T, Uneda K, Uehara T, et al. Effects of sodium-glucose cotransporter 2 inhibitors, mineralocorticoid receptor antagonists, and their combination on albuminuria in diabetic patients. Diabetes Obes Metab. 2023;25:1271–9. https://doi.org/10.1111/dom.14976.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi K, Toyoda M, Hatori N, Furuki T, Sakai H, Umezono T, et al. Blood pressure after treatment with sodium-glucose cotransporter 2 inhibitors influences renal composite outcome: analysis using propensity score-matched models. J Diabetes Investig. 2021;12:74–81. https://doi.org/10.1111/jdi.13318.

    Article  CAS  PubMed  Google Scholar 

  21. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–266.

    Google Scholar 

  22. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92. https://doi.org/10.1053/j.ajkd.2008.12.034.

    Article  CAS  PubMed  Google Scholar 

  23. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10:150–61. https://doi.org/10.1002/pst.433.

    Article  PubMed  Google Scholar 

  24. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15:367–85. https://doi.org/10.1038/s41581-019-0145-4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Usui I. Common metabolic features of hypertension and type 2 diabetes. Hypertens Res. 2023;46:1227–33. https://doi.org/10.1038/s41440-023-01233-x.

    Article  CAS  PubMed  Google Scholar 

  26. Sawami K, Tanaka A, Node K. Recent understandings about hypertension management in type 2 diabetes: What are the roles of SGLT2 inhibitor, GLP-1 receptor agonist, and finerenone? Hypertens Res. 2023. Epub 2023/06/01. https://doi.org/10.1038/s41440-023-01324-9.

  27. Kinguchi S, Wakui H, Ito Y, Kondo Y, Azushima K, Osada U, et al. Improved home BP profile with dapagliflozin is associated with amelioration of albuminuria in Japanese patients with diabetic nephropathy: the Yokohama add-on inhibitory efficacy of dapagliflozin on albuminuria in Japanese patients with type 2 diabetes study (Y-AIDA study). Cardiovasc Diabetol. 2019;18:110. https://doi.org/10.1186/s12933-019-0912-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Masuda T, Nagata D. Fluid homeostasis induced by sodium-glucose cotransporter 2 inhibitors: novel insight for better cardio-renal outcomes in chronic kidney disease. Hypertens Res. 2023;46:1195–201. https://doi.org/10.1038/s41440-023-01220-2.

    Article  CAS  PubMed  Google Scholar 

  29. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61:2098–107. https://doi.org/10.1007/s00125-018-4669-0.

    Article  CAS  PubMed  Google Scholar 

  30. Murakami K, Livingstone MB, Sasaki S, Uenishi K. Ability of self-reported estimates of dietary sodium, potassium and protein to detect an association with general and abdominal obesity: comparison with the estimates derived from 24 h urinary excretion. Br J Nutr. 2015;113:1308–18. https://doi.org/10.1017/s0007114515000495.

    Article  CAS  PubMed  Google Scholar 

  31. Murakami K, Livingstone MB, Okubo H, Sasaki S. Energy density of the diets of Japanese adults in relation to food and nutrient intake and general and abdominal obesity: a cross-sectional analysis from the 2012 National Health and Nutrition Survey, Japan. Br J Nutr. 2017;117:161–9. https://doi.org/10.1017/s0007114516004451.

    Article  CAS  PubMed  Google Scholar 

  32. Alkhezi OS, Alahmed AA, Alfayez OM, Alzuman OA, Almutairi AR, Almohammed OA. Comparative effectiveness of glucagon-like peptide-1 receptor agonists for the management of obesity in adults without diabetes: a network meta-analysis of randomized clinical trials. Obes Rev. 2023;24:e13543 https://doi.org/10.1111/obr.13543.

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi K, Toyoda M, Hatori N, Saito N, Kanaoka T, Sakai H, et al. Retrospective analysis of the renoprotective effects of long-term use of six types of sodium-glucose cotransporter 2 inhibitors in japanese patients with Type 2 diabetes mellitus and chronic kidney disease. Diabetes Technol Ther. 2021;23:110–9. https://doi.org/10.1089/dia.2020.0165.

    Article  CAS  PubMed  Google Scholar 

  34. Furuki T, Kobayashi K, Toyoda M, Hatori N, Sakai H, Sato K, et al. The influence of long-term administration of SGLT2 inhibitors on blood pressure at the office and at home in patients with type 2 diabetes mellitus and chronic kidney disease. J Clin Hypertens (Greenwich). 2020;22:2306–14. https://doi.org/10.1111/jch.14084.

    Article  CAS  PubMed  Google Scholar 

  35. Sakai S, Kaku K, Seino Y, Inagaki N, Haneda M, Sasaki T, et al. Efficacy and safety of the SGLT2 inhibitor Luseogliflozin in Japanese patients with type 2 diabetes mellitus stratified according to baseline body mass index: pooled analysis of data from 52-Week Phase III Trials. Clin Ther. 2016;38:843–62.e9. https://doi.org/10.1016/j.clinthera.2016.01.017.

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Yi T, Fan F, Qiu L, Wang Z, Weng H, et al. Effect of sodium-glucose cotransporter-2 inhibitors on blood pressure in patients with heart failure: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21:139. https://doi.org/10.1186/s12933-022-01574-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Araki E, Harashima S, Nishida T, Nakamura J. Efficacy and safety of once-weekly semaglutide in japanese individuals with type 2 diabetes in the SUSTAIN 1, 2, 5 and 9 trials: post-hoc analysis. J Diabetes Investig. 2022;13:1971–80. https://doi.org/10.1111/jdi.13905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asano M, Sekikawa A, Sugeno M, Matsuoka O, Robertson D, Hansen L. Safety/tolerability, efficacy and pharmacokinetics of 600-μg cotadutide in japanese type 2 diabetes patients with a body mass index of 25 kg/m(2) or higher: a phase i, randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2023;25:2290–9. https://doi.org/10.1111/dom.15107.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all participants of this study and acknowledge the support of Kouta Aoyama, Mitsuo Obana, Shinichi Umezawa, Moritugu Kimura, Yoshiro Hamada, Hiroshi Takeda, Hisakazu Degawa, Hareaki Yamamoto, Hideo Machimura, Kohsuke Minamisawa, Noriyuki Asaba, Yoshiro Suzuki, Satoshi Suzuki, Sanae Takeichi, Keiichi Sekino, Tetsuo Takuma, Noriko Kanaoka, and Nobumichi Saito who contributed considerably to data collection. We also would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuo Kobayashi or Kouichi Tamura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, S., Kobayashi, K., Toyoda, M. et al. Pretreatment body mass index affects achievement of target blood pressure with sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Hypertens Res 47, 628–638 (2024). https://doi.org/10.1038/s41440-023-01464-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01464-y

Keywords

This article is cited by

Search

Quick links