Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Special Issue: Current evidence and perspectives for hypertension management in Asia

A high level of thyroid-stimulating hormone is a risk factor for the development of chronic kidney disease in men: a 10-year cohort study

Abstract

Hypothyroidism has been reported to be associated with chronic kidney disease (CKD). However, the impact of thyroid-stimulating hormone (TSH) on new onset of CKD and its gender dependence remain undetermined. We investigated the association of serum TSH level and the development of CKD defined by estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 or positive for urine protein in 28,990 Japanese subjects who received annual health examinations. After excluding subjects with no data for serum TSH, urinalysis and eGFR and those with CKD at baseline, a total of 10,392 subjects (men/women: 6802/3590, mean age: 48 years) were recruited. During a 10-year follow-up, 1185 men (6.7%) and 578 women (2.9%) newly developed CKD. Multivariable Cox proportional hazard models after adjustment of age, body mass index, smoking habit, hypertension, diabetes mellitus, dyslipidemia, ischemic heart disease and eGFR (≥ 90 mL/min/1.73 m2) showed that the hazard ratio (HR) for the development of CKD in the high TSH (> 4.2 mU/L) group was significantly higher than that in the low TSH (≤ 4.2 mU/L) group in men (HR [95% confidence interval]: 1.41 [1.09–1.83]) but not in women (1.08 [0.77–1.51]). There was a significant interaction between sex and the category of TSH level for the development of CKD (p = 0.02). The adjusted HR with a restricted cubic spline increased with a higher level of TSH in men but not in women. In conclusion, a high level of TSH is associated with an increased risk for the development of CKD in men but not in women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Japanese Society of Nephrology. Essential points from Evidence-based Clinical Practice Guidelines for Chronic Kidney Disease 2018. Clin Exp Nephrol. 2019;23:1–15.

    Article  Google Scholar 

  2. Stevens PE, Levin A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825–30.

    Article  PubMed  Google Scholar 

  3. Matsushita K, Ballew SH, Wang AY, Kalyesubula R, Schaeffner E, Agarwal R. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol. 2022;18:696–707.

    Article  PubMed  Google Scholar 

  4. Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet. 2017;389:1238–52.

    Article  PubMed  Google Scholar 

  5. Yamagata K, Ishida K, Sairenchi T, Takahashi H, Ohba S, Shiigai T, et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 2007;71:159–66.

    Article  CAS  PubMed  Google Scholar 

  6. Di Mauro M, Fiorentini V, Mistrulli R, Veneziano FA, De Luca L. Acute coronary syndrome and renal impairment: a systematic review. Rev Cardiovasc Med. 2022;23:49.

    Article  PubMed  Google Scholar 

  7. Takahashi S, Tanaka M, Furuhashi M, Moniwa N, Koyama M, Higashiura Y, et al. Fatty liver index is independently associated with deterioration of renal function during a 10-year period in healthy subjects. Sci Rep. 2021;11:8606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Osanami A, Tanaka M, Furuhashi M, Ohnishi H, Hanawa N, Yamashita T, et al. Increased LDL-cholesterol level is associated with deterioration of renal function in males. Clin Kidney J. 2022;15:1888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanaka M, Mori K, Takahashi S, Higashiura Y, Ohnishi H, Hanawa N, et al. Metabolic dysfunction-associated fatty liver disease predicts new onset of chronic kidney disease better than fatty liver or nonalcoholic fatty liver disease. Nephrol Dial Transpl. 2023;38:700–11.

    Article  CAS  Google Scholar 

  10. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94:355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheehan MT. Biochemical Testing of the Thyroid: TSH is the Best and, Oftentimes, Only Test Needed - A Review for Primary Care. Clin Med Res. 2016;14:83–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan R, Sikanderkhel S, Gui J, Adeniyi AR, O’Dell K, Erickson M, et al. Thyroid and Cardiovascular Disease: A Focused Review on the Impact of Hyperthyroidism in Heart Failure. Cardiol Res. 2020;11:68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mariani LH, Berns JS. The renal manifestations of thyroid disease. J Am Soc Nephrol. 2012;23:22–6.

    Article  CAS  PubMed  Google Scholar 

  14. Lo JC, Chertow GM, Go AS, Hsu CY. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int. 2005;67:1047–52.

    Article  PubMed  Google Scholar 

  15. Chonchol M, Lippi G, Salvagno G, Zoppini G, Muggeo M, Targher G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3:1296–300.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rhee CM, Kalantar-Zadeh K, Streja E, Carrero JJ, Ma JZ, Lu JL, et al. The relationship between thyroid function and estimated glomerular filtration rate in patients with chronic kidney disease. Nephrol Dial Transpl. 2015;30:282–7.

    Article  CAS  Google Scholar 

  17. Hataya Y, Igarashi S, Yamashita T, Komatsu Y. Thyroid hormone replacement therapy for primary hypothyroidism leads to significant improvement of renal function in chronic kidney disease patients. Clin Exp Nephrol. 2013;17:525–31.

    Article  CAS  PubMed  Google Scholar 

  18. Uchiyama-Matsuoka N, Tsuji K, Uchida HA, Kitamura S, Itoh Y, Nishiyama Y, et al. Masked CKD in hyperthyroidism and reversible CKD status in hypothyroidism. Front Endocrinol (Lausanne). 2022;13:1048863.

    Article  PubMed  Google Scholar 

  19. Fang H, Zhao R, Cui S, Wan W. Sex differences in major cardiovascular outcomes and fractures in patients with subclinical thyroid dysfunction: a systematic review and meta-analysis. Aging (Albany NY). 2022;14:8448–85.

    PubMed  Google Scholar 

  20. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  21. Hishinuma A. TSH Reference Interval Study in Japan. https://www.japanthyroid.jp/common/20200130_tsh_e.pdf.

  22. Thienpont LM, Van Uytfanghe K, De Grande LAC, Reynders D, Das B, Faix JD, et al. Harmonization of Serum Thyroid-Stimulating Hormone Measurements Paves the Way for the Adoption of a More Uniform Reference Interval. Clin Chem. 2017;63:1248–60.

    Article  CAS  PubMed  Google Scholar 

  23. Araki E, Goto A, Kondo T, Noda M, Noto H, Origasa H, et al. Japanese Clinical Practice Guideline for Diabetes 2019. J Diabetes Investig. 2020;11:1020–76.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  25. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

  26. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid. 2014;24:1670–751.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chaker L, Sedaghat S, Hoorn EJ, Elzen WP, Gussekloo J, Hofman A, et al. The association of thyroid function and the risk of kidney function decline: a population-based cohort study. Eur J Endocrinol. 2016;175:653–60.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Chang Y, Ryu S, Cho J, Lee WY, Rhee EJ, et al. Thyroid hormone levels and incident chronic kidney disease in euthyroid individuals: the Kangbuk Samsung Health Study. Int J Epidemiol. 2014;43:1624–32.

    Article  PubMed  Google Scholar 

  29. Toda A, Hara S, Kato M, Tsuji H, Arase Y. Association of Thyrotropin Concentration with Chronic Kidney Disease in a Japanese General Population Cohort. Nephron. 2019;142:91–7.

    Article  CAS  PubMed  Google Scholar 

  30. Valdivielso JM, Jacobs-Cacha C, Soler MJ. Sex hormones and their influence on chronic kidney disease. Curr Opin Nephrol Hypertens. 2019;28:1–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hutchens MP, Fujiyoshi T, Komers R, Herson PS, Anderson S. Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo. Am J Physiol Ren Physiol. 2012;303:F377–85.

    Article  CAS  Google Scholar 

  32. Maric C, Sandberg K, Hinojosa-Laborde C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-estradiol in the aging Dahl salt sensitive rat. J Am Soc Nephrol. 2004;15:1546–56.

    Article  CAS  PubMed  Google Scholar 

  33. Ruiz-Larrea MB, Leal AM, Martin C, Martinez R, Lacort M. Antioxidant action of estrogens in rat hepatocytes. Rev Esp Fisiol. 1997;53:225–9.

    CAS  PubMed  Google Scholar 

  34. Baylis C. Sexual dimorphism in the aging kidney: differences in the nitric oxide system. Nat Rev Nephrol. 2009;5:384–96.

    Article  CAS  PubMed  Google Scholar 

  35. Carrero JJ, Hecking M, Chesnaye NC, Jager KJ. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol. 2018;14:151–64.

    Article  PubMed  Google Scholar 

  36. Yasui T, Hayashi K, Mizunuma H, Kubota T, Aso T, Matsumura Y, et al. Factors associated with premature ovarian failure, early menopause and earlier onset of menopause in Japanese women. Maturitas. 2012;72:249–55.

    Article  PubMed  Google Scholar 

  37. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116:1725–35.

    Article  PubMed  Google Scholar 

  38. Vargas F, Rodriguez-Gomez I, Vargas-Tendero P, Jimenez E, Montiel M. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations. J Endocrinol. 2012;213:25–36.

    Article  CAS  PubMed  Google Scholar 

  39. Narasaki Y, Sohn P, Rhee CM. The Interplay Between Thyroid Dysfunction and Kidney Disease. Semin Nephrol. 2021;41:133–43.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA. Landscape of GPCR expression along the mouse nephron. Am J Physiol Ren Physiol. 2021;321:F50–F68.

    Article  CAS  Google Scholar 

  41. Vieira IH, Rodrigues D, Paiva I. The Mysterious Universe of the TSH Receptor. Front Endocrinol (Lausanne). 2022;13:944715.

    Article  PubMed  Google Scholar 

  42. Sellitti DF, Akamizu T, Doi SQ, Kim GH, Kariyil JT, Kopchik JJ, et al. Renal expression of two ‘thyroid-specific’ genes: thyrotropin receptor and thyroglobulin. Exp Nephrol. 2000;8:235–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Keita Numata and Takashi Hisasue for data management and Tomoyuki Tanaka for provision for information of measurement system for TSH.

Funding

M.T and M.F were supported by JSPS KAKENHI (22K08313, 23K07993).

Author information

Authors and Affiliations

Authors

Contributions

KE, MT and MF designed the study, performed data collection and statistical analyses, and wrote the paper. TS, KM, IH, TM, AU and NH performed data collection. YA and HO performed the statistical analyses. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Masato Furuhashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, K., Tanaka, M., Sato, T. et al. A high level of thyroid-stimulating hormone is a risk factor for the development of chronic kidney disease in men: a 10-year cohort study. Hypertens Res 47, 663–671 (2024). https://doi.org/10.1038/s41440-023-01453-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01453-1

Keywords

This article is cited by

Search

Quick links