Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Obstructive sleep apnea and non-dipper: epiphenomena or risks of Alzheimer’s disease?: a review from the HOPE Asia Network

Abstract

Obstructive sleep apnea (OSA) and associated nocturnal blood pressure (BP) surges is associated with non-dipper. On the other hand, the relationship between neurodegenerative diseases and non-dipper hypertension has been reported. To date, few studies have evaluated the relationships of nocturnal BP dipping patterns and OSA in relation to neurodegenerative diseases, particularly Alzheimer’s disease (AD). This review examines the etiology of the association between OSA and the non-dipper pattern of hypertension and how both are involved in the development of AD. To set the stage for this review, we first focus on the pathophysiology of AD, which is interrelated with sleep apnea and non-dipper through dysregulation of central autonomic network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolf J, Hering D, Narkiewicz K. Non-dipping pattern of hypertension and obstructive sleep apnea syndrome. Hypertens Res. 2010;33:867–71.

    Article  PubMed  Google Scholar 

  2. Kang J, Tian Z, Wei J, Mu Z, Liang J, Li M. Association between obstructive sleep apnea and Alzheimer’s disease-related blood and cerebrospinal fluid biomarkers: a meta-analysis. J Clin Neurosci. 2022;102:87–94.

    Article  PubMed  CAS  Google Scholar 

  3. Cuspidi C, Tadic M, Sala C, Gherbesi E, Grassi G, Mancia G. Blood pressure non-dipping and obstructive sleep apnea syndrome: a meta-analysis. J Clin Med. 2019;8:1367.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thomas SJ, Johnson DA, Guo N, Abdalla M, Booth JN, Spruill TM, et al. Association of obstructive sleep apnea with nighttime blood pressure in African Americans: the Jackson Heart Study. Am J Hypertens. 2020;33:949–57.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Crinion SJ, Kleinerova J, Kent B, Nolan G, Taylor CT, Ryan S, et al. Non-dipping nocturnal blood pressure correlates with obstructive sleep apnoea severity in normotensive subjects and may reverse with therapy. ERJ Open Res. 2021;7:00338-2021.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Genta-Pereira DC, Furlan SF, Omote DQ, Giorgi DMA, Bortolotto LA, Lorenzi-Filho G, et al. Nondipping blood pressure patterns predict obstructive sleep apnea in patients undergoing ambulatory blood pressure monitoring. Hypertension. 2018;72:979–85.

    Article  PubMed  CAS  Google Scholar 

  7. Becker HF, Jerrentrup A, Ploch T, Grote L, Penzel T, Sullivan CE, et al. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation. 2003;107:68–73.

    Article  PubMed  Google Scholar 

  8. Thomas SJ, Calhoun D. Continuous positive airway pressure use: how much is enough? Hypertens Res. 2022;45:533–4.

    Article  PubMed  Google Scholar 

  9. Akashiba T, Minemura H, Yamamoto H, Kosaka N, Saito O, Horie T. Nasal continuous positive airway pressure changes blood pressure “non-dippers” to “dippers” in patients with obstructive sleep apnea. Sleep. 1999;22:849–53.

    Article  PubMed  CAS  Google Scholar 

  10. Kario K. Obsteuctive sleep apnea syndrome and hypertension: mechanism of the linkage and 24-h blood pressure control. Hypertens Res. 2009;32:537–41.

    Article  PubMed  CAS  Google Scholar 

  11. Shirasaki O, Kuwabara M, Saito M, Tagami K, Washiya S, Kario K. Development and clinical application of a new technique for detecting ‘sleep blood pressure surges’ in sleep apnea patients based on a variable desaturation threshold. Hypertens Res. 2011;34:922–8.

    Article  PubMed  Google Scholar 

  12. Sasaki N, Nagai M, Mizuno H, Kuwabara M, Hoshide S, Kario K. Associations between characteristics of obstructive sleep apnea and nocturnal blood pressure surge. Hypertension. 2018;72:1133–40.

    Article  PubMed  CAS  Google Scholar 

  13. Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Ambulatory blood pressure as an independent determinant of brain atrophy and cognitive function in elderly hypertension. J Hypertens. 2008;26:1636–41.

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka R, Hattori N. Abnormal circadian blood pressure regulation and cognitive impairment in α-synucleinopathies. Hypertens Res. 2022;45:1908–17.

    Article  PubMed  Google Scholar 

  15. Nagai M, Dote K, Kato M, Sasaki S, Oda N, Kagawa E, et al. Visit-to-visit blood pressure variability and Alzheimer’s disease: links and risks. J Alzheimers Dis. 2017;59:515–26.

    Article  PubMed  Google Scholar 

  16. Nagai M, Kato M, Dote K. Orthostatic hypotension with nondipping: phenotype of neurodegenerative disease. Hypertens Res. 2022;45:1514–6.

    Article  PubMed  Google Scholar 

  17. Otsuka A, Mikami H, Katahira K, Ogihara T. Circadian changes of blood pressure in the elderly with Alzheimer’s type dementia. Nihon Ronen Igakkai Zasshi. 1990;27:570–2.

    Article  PubMed  CAS  Google Scholar 

  18. Chen HF, Chang-Quan H, You C, Wang ZR, Hui W, Liu QX, et al. The circadian rhythm of arterial blood pressure in Alzheimer disease (AD) patients without hypertension. Blood Press. 2013;22:101–5.

    Article  PubMed  Google Scholar 

  19. Daniela M, Grigoras C, Cuciureanu D, Constantinescu V. The circadian rhythm of arterial blood pressure in Alzheimer’s disease and vascular dementia. Acta Neurol Belg. 2023;123:129–37.

    Article  PubMed  Google Scholar 

  20. Wang H, Xu Y, Ren R, Yao F, Chen M, Sheng Z, et al. Ambulatory blood pressure characteristics of patients with Alzheimer’s disease: a multicenter study from China. J Alzheimers Dis. 2021;83:1333–9.

    Article  PubMed  CAS  Google Scholar 

  21. Pantoni L. White matter ischemia: time to begin integrating experimental and clinical data. Eur Neurol. 2006;56:71–3.

    Article  PubMed  Google Scholar 

  22. Nagai M, Hoshide S, Kario K. Hypertension and dementia. Am J Hypertens. 2010;23:116–24.

    Article  PubMed  Google Scholar 

  23. Paganini-Hill A, Bryant N, Corrada MM, Greenia DE, Fletcher E, Singh B, et al. Blood pressure circadian variation, cognition and brain imaging in 90+ year-olds. Front Aging Neurosci. 2019;11:54.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens. 2010;4:174–82.

    Article  PubMed  Google Scholar 

  25. Aharon-Peretz J, Harel T, Revach M, Ben-Haim SA. Increased sympathetic and decreased parasympathetic cardiac innervation in patients with Alzheimer’s disease. Arch Neurol. 1992;49:919–22.

    Article  PubMed  CAS  Google Scholar 

  26. Toledo MA, Junqueira LF Jr. Cardiac autonomic modulation and cognitive status in Alzheimer’s disease. Clin Auton Res. 2010;20:11–17.

    Article  PubMed  Google Scholar 

  27. Bittner DM, Wieseler I, Wilhelm H, Riepe MW, Müller NG. Repetitive pupil light reflex: potential marker in Alzheimer’s disease? J Alzheimers Dis. 2014;42:1469–77.

    Article  PubMed  CAS  Google Scholar 

  28. Omboni S, Parati G, Di Rienzo M, Wieling W, Mancia G. Blood pressure and heart rate variability in autonomic disorders: a critical review. Clin Auton Res. 1996;6:171–82.

    Article  PubMed  CAS  Google Scholar 

  29. Gupta A, Iadecola C. Impaired Aβ clearance: a potential link between atherosclerosis and Alzheimer’s disease. Front Aging Neurosci. 2015;7:115.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson Ó, et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility–Reykjavik study. Brain. 2011;134:3398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tzourio C, Laurent S, Debette S. Is hypertension associated with an accelerated aging of the brain? Hypertension. 2014;63:894–903.

    Article  PubMed  CAS  Google Scholar 

  32. Kitamura J, Nagai M, Ueno H, Ohshita T, Kikumoto M, Toko M, et al. The insular cortex, Alzheimer disease pathology, and their effects on blood pressure variability. Alzheimer Dis Assoc Disord. 2020;34:282–91.

    Article  PubMed  CAS  Google Scholar 

  33. Sander D, Klingelhofer J. Changes of circadian blood pressure patterns after hemodynamic and thromboembolic brain infarction. Stroke. 1994;25:1730–7.

    Article  PubMed  CAS  Google Scholar 

  34. Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology. 2001;57:833–8.

    Article  PubMed  CAS  Google Scholar 

  35. Sykora M, Diedler J, Rupp A, Turcani P, Steiner T. Impaired baroreceptor reflex sensitivity in acute stroke is associated with insular involvement, but not with carotid atherosclerosis. Stroke. 2009;40:737–42.

    Article  PubMed  Google Scholar 

  36. Hermann DM, Siccoli M, Kirov P, Gugger M, Bassetti CL. Central periodic breathing during sleep in acute ischemic stroke. Stroke. 2007;38:1082–4.

    Article  PubMed  Google Scholar 

  37. Kikumoto M, Nagai M, Ohshita T, Toko M, Kato M, Dote K, et al. Insular cortex lesion and autonomic instability in a herpes simplex virus encephalitis patient. J Neurovirol. 2018;24:649–51.

    Article  PubMed  CAS  Google Scholar 

  38. Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Insular cortex atrophy as an independent determinant of disrupted diurnal rhythm of ambulatory blood pressure in elderly hypertension. Am J Hypertens. 2009;22:723–9.

    Article  PubMed  Google Scholar 

  39. Nagai M, Dote K, Kato M, Sasaki S, Oda N, Kagawa E, et al. The insular cortex and Takotsubo cardiomyopathy. Curr Pharm Des. 2017;23:879–88.

    Article  PubMed  CAS  Google Scholar 

  40. Joo EY, Tae WS, Lee MJ, Kang JW, Park HS, Lee JY, et al. Reduced brain gray matter concentration in patients with obstructive sleep apnea syndrome. Sleep. 2010;33:235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pal A, Ogren JA, Aysola RS, Kumar R, Henderson LA, Harper RM, et al. Insular functional organization during handgrip in females and males with obstructive sleep apnea. PLoS ONE. 2021;16:e0246368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kong L, Li H, Shu Y, Liu X, Li P, Li K, et al. Aberrant resting-state functional brain connectivity of insular subregions in obstructive sleep apnea. Front Neurosci. 2022;15:765775.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou L, Liu G, Luo H, Li H, Peng Y, Zong D, et al. Aberrant hippocampal network connectivity is associated with neurocognitive dysfunction in patients with moderate and severe obstructive sleep apnea. Front Neurol. 2020;11:580408.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Royall DR, Gao JH, Kellogg DL Jr. Insular Alzheimer’s disease pathology as a cause of “age-related” autonomic dysfunction and mortality in the non-demented elderly. Med Hypotheses. 2006;67:747–58.

    Article  PubMed  Google Scholar 

  45. Royall DR. Insular Alzheimer disease pathology and the psychometric correlates of mortality. Cleve Clin J Med. 2008;75:S97–99.

    Article  PubMed  Google Scholar 

  46. Braak H, Braak E. Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm. 1998;53:127–40.

    CAS  Google Scholar 

  47. Daulatzai MA. Death by a thousand cuts in Alzheimer’s disease: hypoxia—the prodrome. Neurotox Res. 2013;24:216–43.

    Article  PubMed  Google Scholar 

  48. Emamian F, Khazaie H, Tahmasian M, Leschziner GD, Morrell MJ, Hsiung GY, et al. The association between obstructive sleep apnea and Alzheimer’s disease: a meta-analysis perspective. Front Aging Neurosci. 2016;8:78.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tokunou T, Ando SI. Recent advances in the management of secondary hypertension-obstructive sleep apnea. Hypertens Res. 2020;43:1338–43.

    Article  PubMed  Google Scholar 

  50. Shang W, Zhang Y, Liu L, Chen F, Wang G, Han D. Benefits of continuous positive airway pressure on blood pressure in patients with hypertension and obstructive sleep apnea: a meta-analysis. Hypertens Res. 2022;45:1802–13.

    Article  PubMed  Google Scholar 

  51. Sapiña-Beltrán E, Benitez ID, Torres G, Fortuna-Gutiérrez AM, Ponte Márquez P, Masa JF, et al. Effect of CPAP treatment on BP in resistant hypertensive patients according to the BP dipping pattern and the presence of nocturnal hypertension. Hypertens Res. 2022;45:436–44.

    Article  PubMed  Google Scholar 

  52. Saito T, Saito T, Sugiyama S, Asai K, Yasutake M, Mizuno K. Effects of long-term treatment for obstructive sleep apnea on pulse wave velocity. Hypertens Res. 2010;33:844–9.

    Article  PubMed  Google Scholar 

  53. Noda A, Nakata S, Koike Y, Miyata S, Kitaichi K, Nishizawa T, et al. Continuous positive airway pressure improves daytime baroreflex sensitivity and nitric oxide production in patients with moderate to severe obstructive sleep apnea syndrome. Hypertens Res. 2007;30:669–76.

    Article  PubMed  CAS  Google Scholar 

  54. Shieu MM, Zaheed A, Shannon C, Chervin RD, Conceicao A, Paulson HL, et al. Positive airway pressure and cognitive disorders in adults with obstructive sleep apnea: a systematic review of the literature. Neurology. 2022;99:e334–46.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jiang X, Wang Z, Hu N, Yang Y, Xiong R, Fu Z. Cognition effectiveness of continuous positive airway pressure treatment in obstructive sleep apnea syndrome patients with cognitive impairment: a meta-analysis. Exp Brain Res. 2021;239:3537–52.

    Article  PubMed  Google Scholar 

  56. Martínez-García MA, Capote F, Campos-Rodríguez F, Lloberes P, Díaz de Atauri MJ, Somoza M, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA. 2013;310:2407–15.

    Article  PubMed  Google Scholar 

  57. Barbé F, Mayoralas LR, Duran J, Masa JF, Maimó A, Montserrat JM, et al. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. A randomized, controlled trial. Ann Intern Med. 2001;134:1015–23.

    Article  PubMed  Google Scholar 

  58. Nagai M, Dote K, Förster CY. Is unrecognized cognitive impairment in hypertension unmasked by diabetes mellitus? Hypertens Res. 2022;45:1082–4.

    Article  PubMed  Google Scholar 

  59. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4:487–99.

    Article  PubMed  Google Scholar 

  60. Moll AC, Woodard JL. Hypertension and cognition are minimally associated in late life. Hypertens Res. 2022;45:1622–31.

    Article  PubMed  Google Scholar 

  61. Bayang Z, Shaohua J. Heterogeneity in longitudinal trajectories of cognitive performance among middle-aged and older individuals with hypertension: growth mixture modeling across an 8-year cohort study. Hypertens Res. 2022;45:1037–46.

    Article  Google Scholar 

  62. Armario P, Gómez-Choco M. Is it possible to prevent cognitive decline among middle-aged and older hypertensive individuals? Hypertens Res. 2022;45:1079–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Viatris for the grant to support the HOPE Asia Network activities.

the HOPE Asia Network

Michiaki Nagai1,2 Keigo Dote2 Sungha Park3 Yuda Turana4 Peera Buranakitjaroen5 Hao-Min Cheng6,7,8,9 Arieska Ann Soenarta10 Yan Li11 Kazuomi Kario12

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Michiaki Nagai.

Ethics declarations

Conflict of interest

SP received honoraria from Pfizer, Boryoung, Hanmi, Daewoong, Donga, Celltrion, Servier, Daiichi Sankyo and Daewon. SP also received research grant from Daiichi Sankyo. HMC served as a speaker or member of speakers bureau AstraZeneca; Pfizer Inc.; Bayer AG; Boehringer Ingelheim Pharmaceuticals, Inc.; Daiichi Sankyo, Novartis Pharmaceuticals, Inc.; SERVIER; Co., Pharmaceuticals Corporation; Sanofi; TAKEDA Pharmaceuticals International; Eli Lilly. HMC also received grants for clinical research from: Microlife Co., Ltd. KK reports research grant from A&D, Omron Healthcare, Fukuda Denshi. All other authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagai, M., Dote, K., Park, S. et al. Obstructive sleep apnea and non-dipper: epiphenomena or risks of Alzheimer’s disease?: a review from the HOPE Asia Network. Hypertens Res 47, 271–280 (2024). https://doi.org/10.1038/s41440-023-01440-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01440-6

Keywords

This article is cited by

Search

Quick links