Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KCNJ5 mutation is a predictor for recovery of endothelial function after adrenalectomy in patients with aldosterone-producing adenoma

A Comment to this article was published on 05 September 2023

Abstract

The relationship of KCNJ5 mutation with vascular function and vascular structure in aldosterone-producing adenoma (APA) patients before and after adrenalectomy remains unclear. The purpose of this study was to evaluate the influence of KCNJ5 mutation on vascular function and vascular structure in APA and the effects of adrenalectomy on vascular function and vascular structure in APA patients with and those without KCNJ5 mutation. Flow-mediated vasodilation (FMD), nitroglycerine-induced vasodilation (NID), brachial artery intima-media thickness (IMT), and brachial-ankle pulse wave velocity (baPWV) were measured to assess vascular function and vascular structure in 46 APA patients with KCNJ5 mutation and 23 APA patients without KCNJ5 mutation and in 69 matched pairs of patients with essential hypertension (EHT). FMD, NID, brachial IMT and baPVW were evacuated before adrenalectomy and at 12 weeks after adrenalectomy in APA patients with KCNJ5 mutation and APA patients without KCNJ5 mutation. FMD and NID were significantly lower in APA patients than in patients with EHT. There was no significant difference in FMD or NID between patients with and those without KCNJ5 mutation. In APA patients with KCNJ5 mutation, FMD and NID after adrenalectomy were significantly higher than those before adrenalectomy. In APA patients without KCNJ5 mutation, only NID after adrenalectomy was significantly higher than that before adrenalectomy. Endothelial function in APA patients with KCNJ5 mutation was improved by adrenalectomy in the early postoperative period. KCNJ5 mutation is a predictor for early resolution of endothelial function by adrenalectomy. This study was approved by principal authorities and ethical issues in Japan (URL for Clinical Trial: http://www.umin.ac.jp/ctr/index.htm Registration Number for Clinical Trial: UMIN000003409).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loh KC, Koay ES, Khaw MC, Emmanuel SC, Young WF Jr. Prevalence of primary aldosteronism among Asian hypertensive patients in Singapore. J Clin Endocrinol Metab. 2000;85:2854–9.

    CAS  PubMed  Google Scholar 

  2. Mosso L, Carvajal C, González A, Barraza A, Avila F, Montero J, et al. Primary aldosteronism and hypertensive disease. Hypertension. 2003;42:161–5.

    Article  CAS  PubMed  Google Scholar 

  3. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243–8.

    Article  CAS  PubMed  Google Scholar 

  4. Savard S, Amar L, Plouin PF, Steichen O. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension. 2013;62:331–6.

    Article  CAS  PubMed  Google Scholar 

  5. Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331:768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 2013;45:440–4.

    Article  CAS  PubMed  Google Scholar 

  7. Azizan EA, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 2013;45:1055–60.

    Article  CAS  PubMed  Google Scholar 

  8. Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. eLife. 2015;4:e06315.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fernandes-Rosa FL, Daniil G, Orozco IJ, Göppner C, El Zein R, Jain V, et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat. Genet. 2018;50:355–61.

    Article  CAS  PubMed  Google Scholar 

  10. Nanba K, Omata K, Else T, Beck PCC, Nanba AT, Turcu AF, et al. Targeted molecular characterization of aldosterone-producing adenomas in White Americans. J Clin Endocrinol Metab. 2018;103:3869–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Taguchi R, Yamada M, Nakajima Y, Satoh T, Hashimoto K, Shibusawa N. et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab. 2012;97:1311–9.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng FF, Zhu LM, Nie AF, Li XY, Lin JR, Zhang K, et al. Clinical characteristics of somatic mutations in Chinese patients with aldosterone-producing adenoma. Hypertension. 2015;65:622–8.

    Article  CAS  PubMed  Google Scholar 

  13. Lenzini L, Rossitto G, Maiolino G, Letizia C, Funder JW, Rossi GP. A meta-analysis of somatic KCNJ5 K(+) channel mutations In 1636 patients with an aldosterone-producing adenoma. J Clin Endocrinol Metab. 2015;100:E1089–1095.

    Article  PubMed  Google Scholar 

  14. Vilela LAP, Rassi-Cruz M, Guimaraes AG, Moises CCS, Freitas TC, Alencar NP. et al. KCNJ5 somatic mutation is a predictor of hypertension remission after adrenalectomy for unilateral primary aldosteronism. J Clin Endocrinol Metab. 2019;104:4695–702.

    Article  PubMed  Google Scholar 

  15. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  16. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73:411–8.

    Article  CAS  PubMed  Google Scholar 

  17. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111–5.

    Article  CAS  PubMed  Google Scholar 

  18. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.

    Article  PubMed  Google Scholar 

  19. Nishizaka MK, Zaman MA, Green SA, Renfroe KY, Calhoun DA. Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism. Circulation. 2004;109:2857–61.

    Article  CAS  PubMed  Google Scholar 

  20. Duffy SJ, Biegelsen ES, Eberhardt RT, Kahn DF, Kingwell BA, Vita JA. Low-renin hypertension with relative aldosterone excess is associated with impaired NO-mediated vasodilation. Hypertension. 2005;46:707–13.

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto T, Oki K, Kajikawa M, Nakashima A, Maruhashi T, Iwamoto Y, et al. Effect of aldosterone-producing adenoma on endothelial function and Rho-associated kinase activity in patients with primary aldosteronism. Hypertension. 2015;65:841–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nagata D, Takahashi M, Sawai K, Tagami T, Usui T, Shimatsu A, et al. Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension. 2006;48:165–71.

    Article  CAS  PubMed  Google Scholar 

  23. Keidar S, Kaplan M, Pavlotzky E, Coleman R, Hayek T, Hamoud S, et al. Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone. Circulation. 2004;109:2213–20.

    Article  CAS  PubMed  Google Scholar 

  24. Kishimoto S, Oki K, Maruhashi T, Kajikawa M, Hashimoto H, Takaeko Y, et al. A comparison of adrenalectomy and eplerenone on vascular function in patients with aldosterone-producing adenoma. J Clin Endocrinol Metab. 2020;105:3474–85.

  25. Nishikawa T, Omura M, Satoh F, Shibata H, Takahashi K, Tamura N, et al. Guidelines for the diagnosis and treatment of primary aldosteronism-the Japan Endocrine Society 2009. Endocr J. 2011;58:711–21.

    Article  CAS  PubMed  Google Scholar 

  26. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H. et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  27. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y. et al. Nitroglycerine-induced vasodilation for assessment of vascular function: a comparison with flow-mediated vasodilation. Arterioscler Thromb Vasc Biol. 2013;33:1401–8.

    Article  CAS  PubMed  Google Scholar 

  28. Iwamoto Y, Maruhashi T, Fujii Y, Idei N, Fujimura N, Mikami S. et al. Intima-media thickness of brachial artery, vascular function, and cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2012;32:2295–303.

    Article  CAS  PubMed  Google Scholar 

  29. Kimoto E, Shoji T, Shinohara K, Inaba M, Okuno Y, Miki T, et al. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes. 2003;52:448–52.

    Article  CAS  PubMed  Google Scholar 

  30. Kishimoto R, Oki K, Yoneda M, Gomez-Sanchez CE, Ohno H, Kobuke K, et al. Gonadotropin-releasing hormone stimulate aldosterone production in a subset of aldosterone-producing adenoma. Medicine. 2016;95:e3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang YY, Tsai CH, Peng SY, Chen ZW, Chang CC, Lee BC, et al. KCNJ5 somatic mutations in aldosterone-producing adenoma are associated with a worse baseline status and better recovery of left ventricular remodeling and diastolic function. Hypertension. 2021;77:114–25.

    Article  CAS  PubMed  Google Scholar 

  32. Nanba K, Yamazaki Y, Bick N, Onodera K, Tezuka Y, Omata K. et al. Prevalence of somatic mutations in aldosterone-producing adenomas in Japanese patients. J Clin Endocrinol Metab. 2020;105:e4066–4073.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chang YY, Pan CT, Chen ZW, Tsai CH, Peng SY, Chang CC, et al. KCNJ5 somatic mutations in aldosterone-producing adenoma are associated with a greater recovery of arterial stiffness. Cancers. 2021;13:4313.

  34. De Sousa K, Boulkroun S, Baron S, Nanba K, Wack M, Rainey WE, et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension. 2020;75:1034–44.

    Article  PubMed  Google Scholar 

  35. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26:631–40.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Megumi Wakisaka, Ki-ichiro Kawano, and Satoko Michiyama for their excellent secretarial assistance.

Funding

Funding

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (18590815 and 21590898 to YH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihito Higashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, S., Oki, K., Maruhashi, T. et al. KCNJ5 mutation is a predictor for recovery of endothelial function after adrenalectomy in patients with aldosterone-producing adenoma. Hypertens Res 46, 2213–2227 (2023). https://doi.org/10.1038/s41440-023-01375-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01375-y

Keywords

This article is cited by

Search

Quick links