Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Fructose might be a clue to the origin of preeclampsia insights from nature and evolution

Abstract

Preeclampsia is a hypertensive disorder of pregnancy and is due to abnormal placentation. The pathogenesis remains unclear. Fructose is biologically distinct from glucose and has a critical role in fetal growth in early pregnancy. Many species, including humans, produce fructose in their placenta during the first trimester to assist fetal growth and survival during a time when hypoxia is significant. Fructose is preferred over glucose in hypoxic tissues, and in the developing fetus, fructose has a critical role in stimulating the production of nucleic acids, lipids and glycosaminoglycans. Fructose production normally decreases significantly following the establishment of maternal-fetal circulation following placentation. However, if there is impaired placentation, local hypoxia will continue to drive fructose production. Excessive fructose metabolism drives endothelial dysfunction, oxidative stress, elevated blood pressure, insulin resistance, fatty liver, and a rise in uric acid and vasopressin levels, all of which are features of the preeclamptic state. In addition to fructose production, dietary fructose, for example, from soft drinks, would be additive and has been reported to be a strong independent risk factor for preeclampsia. Uric acid-associated endothelial dysfunction disturbs the invasion of the spiral artery, leading to placental ischemia and further placental hypoxia. Here, we summarize the previous literature regarding the physiological and pathological roles of fructose in pregnancy and propose studies to further investigate the pathogenesis of preeclampsia.

Fructose might be a Clue to the Origin of Preeclampsia Insights from Nature and Evolution Preeclampsia is a hypertensive disorder of pregnancy. The pathogenesis remains unclear. Fructose has a critical role in fetal growth in early pregnancy, and might be a key role to developing preeclampsia. Here, we summarize the previous literatures regarding the physiological andpathological roles of fructose in pregnancy to propose studies to further investigate the pathogenesis of preeclampsia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grieger JA, Bianco-Miotto T, Grzeskowiak LE, Leemaqz SY, Poston L, McCowan LM, et al. Metabolic syndrome in pregnancy and risk for adverse pregnancy outcomes: A prospective cohort of nulliparous women. PLoS Med. 2018;15:e1002710.

    Article  Google Scholar 

  2. Walker RW, Goran MI. Laboratory determined sugar content and composition of commerical infant formulas, baby foods and common grocery items targeted to children. Nutrients. 2015;in press.

  3. Malik VS, Li Y, Pan A, De Koning L, Schernhammer E, Willett WC, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139:2113–25.

    Article  CAS  Google Scholar 

  4. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.

    Article  CAS  Google Scholar 

  5. Perez-Pozo SE, Schold J, Nakagawa T, Sanchez-Lozada LG, Johnson RJ, Lillo JL. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int J Obes (Lond). 2010;34:454–61.

    Article  CAS  Google Scholar 

  6. Borgen I, Aamodt G, Harsem N, Haugen M, Meltzer HM, Brantsaeter AL. Maternal sugar consumption and risk of preeclampsia in nulliparous Norwegian women. Eur J Clin Nutr. 2012;66:920–5.

    Article  CAS  Google Scholar 

  7. Cicerchi C, Li N, Kratzer J, Garcia G, Roncal-Jimenez CA, Tanabe K, et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB J. 2014;28:3339–50.

    Article  CAS  Google Scholar 

  8. Johnson RJ, Stenvinkel P, Andrews P, Sanchez-Lozada LG, Nakagawa T, Gaucher E, et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. J Intern Med. 2020;287:252–62.

    Article  CAS  Google Scholar 

  9. Nakagawa T, Lanaspa MA, Millan IS, Fini M, Rivard CJ, Sanchez-Lozada LG, et al. Fructose contributes to the Warburg effect for cancer growth. Cancer Metab. 2020;8:16.

    Article  Google Scholar 

  10. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67:1739–42.

    Article  Google Scholar 

  11. Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012;287:40732–44.

    Article  CAS  Google Scholar 

  12. Andres-Hernando A, Jensen TJ, Kuwabara M, Orlicky DJ, Cicerchi C, Li N, et al. Vasopressin mediates Fructose-induced Metabolic Syndrome by activating the V1b Receptor. JCI Insight. 2021;6:e140848.

    Article  Google Scholar 

  13. Johnson RJ, Stenvinkel P, Jensen T, Lanaspa MA, Roncal C, Song Z, et al. Metabolic and kidney diseases in the setting of climate change, water shortage, and survival factors. J Am Soc Nephrol. 2016;27:2247–56.

    Article  Google Scholar 

  14. Park TJ, Reznick J, Peterson BL, Blass G, Omerbasic D, Bennett NC, et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science. 2017;356:307–11.

    Article  CAS  Google Scholar 

  15. Ng SW, Slining MM, Popkin BM. Use of caloric and noncaloric sweeteners in US consumer packaged foods, 2005-2009. J Acad Nutr Diet. 2012;112:1828–34 e1821-1826.

    Article  Google Scholar 

  16. Bacon JS, Bell DJ. The identification of fructose as a constituent of the foetal blood of the sheep. Biochem J. 1946;40:xlii.

    CAS  Google Scholar 

  17. Barklay H, Haas P, et al. The sugar of the foetal blood, the amniotic and allantoic fluids. J Physiol. 1949;109:98–102.

    Article  CAS  Google Scholar 

  18. Goodwin RF. Division of the common mammals into two groups according to the concentration of fructose in the blood of the foetus. J Physiol. 1956;132:146–56.

    Article  CAS  Google Scholar 

  19. Jauniaux E, Hempstock J, Teng C, Battaglia FC, Burton GJ. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab. 2005;90:1171–5.

    Article  CAS  Google Scholar 

  20. Cole SW, Hitchcock MW. Sugars in the foetal and maternal bloods of sheep. Biochem J. 1946;40:li.

    CAS  Google Scholar 

  21. Huggett AS, Warren FL, Warren NV. The origin of the blood fructose of the foetal sheep. J Physiol. 1951;113:258–75.

    Article  CAS  Google Scholar 

  22. Hagerman DD, Roux J, Villee CA. Studies of the mechanism of fructose production by human placenta. J Physiol. 1959;146:98–104.

    Article  CAS  Google Scholar 

  23. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol. 2000;157:2111–22.

    Article  CAS  Google Scholar 

  24. Mirtschink P, Krishnan J, Grimm F, Sarre A, Horl M, Kayikci M, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature. 2015;522:444–9.

    Article  CAS  Google Scholar 

  25. Asghar ZA, Thompson A, Chi M, Cusumano A, Scheaffer S, Al-Hammadi N, et al. Maternal fructose drives placental uric acid production leading to adverse fetal outcomes. Sci Rep. 2016;6:25091.

    Article  CAS  Google Scholar 

  26. Steinhauser CB, Landers M, Myatt L, Burghardt RC, Vallet JL, Bazer FW, et al. Fructose synthesis and transport at the uterine-placental interface of pigs: cell-specific localization of SLC2A5, SLC2A8, and components of the polyol pathway. Biol Reprod. 2016;95:108.

    Article  Google Scholar 

  27. Grand RJ, Schay MI, Jaksina S. Development and control of intestinal and hepatic fructokinase. Pediatr Res. 1974;8:765–70.

    Article  CAS  Google Scholar 

  28. Many A, Hubel CA, Fisher SJ, Roberts JM, Zhou Y. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol. 2000;156:321–31.

    Article  CAS  Google Scholar 

  29. Huggett AS. Carbohydrate metabolism in the placenta and foetus. Br Med Bull. 1961;17:122–6.

    Article  CAS  Google Scholar 

  30. Scott TW, Setchell BP, Bassett JM. Characterization and metabolism of ovine foetal lipids. Biochem J. 1967;104:1040–7.

    Article  CAS  Google Scholar 

  31. White CE, Piper EL, Noland PR, Daniels LB. Fructose utilization for nucleic acid synthesis in the fetal pig. J Anim Sci. 1982;55:73–76.

    Article  CAS  Google Scholar 

  32. Kim J, Song G, Wu G, Bazer FW. Functional roles of fructose. Proc Natl Acad Sci USA. 2012;109:E1619–1628.

    Article  CAS  Google Scholar 

  33. Meznarich HK, Hay WW Jr., Sparks JW, Meschia G, Battaglia FC. Fructose disposal and oxidation rates in the ovine fetus. Q J Exp Physiol. 1987;72:617–25.

    Article  CAS  Google Scholar 

  34. Brown KS, Kalinowski SS, Megill JR, Durham SK, Mookhtiar KA. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 1997;46:179–86.

    Article  CAS  Google Scholar 

  35. Niculescu L, Veiga-da-Cunha M, Van Schaftingen E. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes. Biochem J. 1997;321:239–46.

    Article  CAS  Google Scholar 

  36. Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP, Maclean PS, et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc Natl Acad Sci USA. 2012;109:4320–5.

    Article  CAS  Google Scholar 

  37. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33:130–7.

    Article  Google Scholar 

  38. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111:649–58.

    Article  CAS  Google Scholar 

  39. Abildgaard U, Heimdal K. Pathogenesis of the syndrome of hemolysis, elevated liver enzymes, and low platelet count (HELLP): a review. Eur J Obstet Gynecol Reprod Biol. 2013;166:117–23.

    Article  CAS  Google Scholar 

  40. Hwang YC, Kaneko M, Bakr S, Liao H, Lu Y, Lewis ER, et al. Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J. 2004;18:1192–9.

    Article  CAS  Google Scholar 

  41. Lanaspa MA, Ishimoto T, Cicerchi C, Tamura Y, Roncal-Jimenez CA, Chen W, et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J Am Soc Nephrol. 2014;25:2526–38.

    Article  CAS  Google Scholar 

  42. Seval MM, Karabulut HG, Tukun A, Koc A. Cell free fetal DNA in the plasma of pregnant women with preeclampsia. Clin Exp Obstet Gynecol. 2015;42:787–91.

    Article  CAS  Google Scholar 

  43. Bainbridge SA, Roberts JM. Uric Acid as a Pathogenic Factor in Preeclampsia. Placenta 2008;29S:67–72.

    Article  Google Scholar 

  44. de Jong CL, Paarlberg KM, van Geijn HP, Schipper EJ, Bast A, Kostense PJ, et al. Decreased first trimester uric acid production in future preeclamptic patients. J Perinat Med. 1997;25:347–52.

    Article  Google Scholar 

  45. Slemons JM, Bogert, L J. The uric acid content of maternal and fetal blood. Jounal Biol Chem. 1917;32:63–69.

    Article  CAS  Google Scholar 

  46. Lanaspa MA, Sanchez-Lozada LG, Cicerchi C, Li N, Roncal-Jimenez CA, Ishimoto T, et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS One. 2012;7:e47948.

    Article  CAS  Google Scholar 

  47. Johnson RJ, Kanbay M, Kang DH, Sanchez-Lozada LG, Feig D. Uric acid: a clinically useful marker to distinguish preeclampsia from gestational hypertension. Hypertension 2011;58:548–9.

    Article  CAS  Google Scholar 

  48. Bainbridge SA, Roberts JM, von Versen-Hoynck F, Koch J, Edmunds L, Hubel CA. Uric acid attenuates trophoblast invasion and integration into endothelial cell monolayers. Am J Physiol Cell Physiol. 2009;297:C440–450.

    Article  CAS  Google Scholar 

  49. Santillan MK, Santillan DA, Scroggins SM, Min JY, Sandgren JA, Pearson NA, et al. Vasopressin in preeclampsia: a novel very early human pregnancy biomarker and clinically relevant mouse model. Hypertension 2014;64:852–9.

    Article  CAS  Google Scholar 

  50. Jia G, Aroor AR, Whaley-Connell AT, Sowers JR. Fructose and uric acid: is there a role in endothelial function? Curr Hypertens Rep. 2014;16:434.

    Article  Google Scholar 

  51. Chang FM, Chow SN, Huang HC, Hsieh FJ, Chen HY, Lee TY, et al. The placental transfer and concentration difference in maternal and neonatal serum uric acid at parturition: comparison of normal pregnancies and gestosis. Biol Res Pregnancy Perinatol. 1987;8:35–39.

    CAS  Google Scholar 

  52. Chekir C, Nakatsuka M, Noguchi S, Konishi H, Kamada Y, Sasaki A, et al. Accumulation of advanced glycation end products in women with preeclampsia: possible involvement of placental oxidative and nitrative stress. Placenta 2006;27:225–33.

    Article  CAS  Google Scholar 

  53. Akasaka J, Naruse K, Sado T, Uchiyama T, Makino M, Yamauchi A, et al. Involvement of Receptor for Advanced Glycation Endproducts in Hypertensive Disorders of Pregnancy. Int J Mol Sci. 2019;20.

  54. Takeuchi M, Iwaki M, Takino J, Shirai H, Kawakami M, Bucala R, et al. Immunological detection of fructose-derived advanced glycation end-products. Lab Invest. 2010;90:1117–27.

    Article  CAS  Google Scholar 

  55. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94:6474–9.

    Article  CAS  Google Scholar 

  56. Vickers MH, Clayton ZE, Yap C, Sloboda DM. Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology 2011;152:1378–87.

    Article  CAS  Google Scholar 

  57. Kratzer JT, Lanaspa MA, Murphy MN, Cicerchi C, Graves CL, Tipton PA, et al. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci USA. 2014;111:3763–8.

    Article  CAS  Google Scholar 

  58. Saben JL, Asghar Z, Rhee JS, Drury A, Scheaffer S, Moley KH. Excess Maternal Fructose Consumption Increases Fetal Loss and Impairs Endometrial Decidualization in Mice. Endocrinology 2016;157:956–68.

    Article  CAS  Google Scholar 

  59. Keyes LE, Armaza JF, Niermeyer S, Vargas E, Young DA, Moore LG. Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr Res. 2003;54:20–25.

    Article  Google Scholar 

  60. Reungjui S, Pratipanawatr T, Johnson RJ, Nakagawa T. Do thiazides worsen metabolic syndrome and renal disease? The pivotal roles for hyperuricemia and hypokalemia. Curr Opin Nephrol Hypertens. 2008;17:470–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Nakagawa.

Ethics declarations

Conflict of interest

MAL, DRT, LGL, and RJJ have shares in a start-up company developing fructokinase inhibitors (Colorado Research Partners LLC). TN and RJJ have shares in XORTX therapeutics, which is developing novel xanthine oxidase inhibitors. Dr. Johnson is a consultant for Horizon Pharmaceuticals, Inc. Dr. Karumanchi is a coinventor on patents for the use of angiogenic biomarkers in preeclampsia, has served as consultant for Roche and Thermo Fisher Scientific and has financial interest in Aggamin Pharmaceuticals and Comanche Biopharma. All other authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, T., Ana Andres-Hernando, Kosugi, T. et al. Fructose might be a clue to the origin of preeclampsia insights from nature and evolution. Hypertens Res 46, 646–653 (2023). https://doi.org/10.1038/s41440-022-01121-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-01121-w

Keywords

Search

Quick links