Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LncRNA Rian reduces cardiomyocyte pyroptosis and alleviates myocardial ischemia–reperfusion injury by regulating by the miR-17-5p/CCND1 axis

Abstract

Myocardial ischemia–reperfusion injury (MIRI) is a pathological process characterized by cardiomyocyte death. Long noncoding RNAs (lncRNAs) have been shown to be dysregulated in the course of MIRI. Accordingly, the current study investigated the mechanism of lncRNA Rian in MIRI-induced cardiomyocyte pyroptosis. First, a murine model of MIRI was established by using the left anterior descending (LAD) coronary artery ligation method. Cardiac function and myocardial histopathological changes were evaluated by echocardiography and hematoxylin and eosin staining. Then, a cell model of MIRI was established by oxygen-glucose deprivation/reoxygenation (OGD/R), followed by analysis of NLRP3, cleaved caspase-1, and GSDMD-N levels by western blotting. The levels of IL-1β, IL-18, TNF-α, and IL-10 were measured using ELISA. LncRNA Rian, miR-17-5p, and CCND1 expression in myocardial tissues and OGD/R cells were examined using RT-qPCR. Finally, the binding relationships between Rian and miR-17-5p and miR-17-5p and CCND1 were validated with the help of dual-luciferase and RNA pull-down assays. Rian was poorly expressed in MIRI mice and OGD/R cells. LncRNA Rian overexpression reduced cardiomyocyte pyroptosis in vivo and in vitro, as indicated by decreased NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, IL-18, and TNF-α levels and increased IL-10 levels. Furthermore, Rian bound to miR-17-5p and promoted CCND1 transcription. Notably, miR-17-5p overexpression or CCND1 silencing reversed the inhibitory effect of Rian overexpression on cardiomyocyte pyroptosis. Collectively, our findings indicate that Rian overexpression reduces cardiomyocyte pyroptosis and alleviates MIRI through the miR-17-5p/CCND1 axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 2012;16:123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Investig. 2013;123:92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011;17:1391–401.

    Article  CAS  PubMed  Google Scholar 

  4. Gong C, Zhou X, Lai S, Wang L, Liu J. Long noncoding RNA/Circular RNA-miRNA-mRNA axes in ischemia-reperfusion injury. Biomed Res Int. 2020;2020:8838524.

    PubMed  PubMed Central  Google Scholar 

  5. Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM, et al. BCL2regulated apoptotic process in myocardial ischemiareperfusion injury (Review). Int J Mol Med. 2021;47:23–36.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang S, et al. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease. Clin Chim Acta. 2020;510:62–72.

    Article  CAS  PubMed  Google Scholar 

  7. Lou Y, Wang S, Qu J, Zheng J, Jiang W, Lin Z, et al. miR-424 promotes cardiac ischemia/reperfusion injury by direct targeting of CRISPLD2 and regulating cardiomyocyte pyroptosis. Int J Clin Exp Pathol. 2018;11:3222–35.

    PubMed  PubMed Central  Google Scholar 

  8. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Sun X. The functions of LncRNA in the heart. Diabetes Res Clin Pract. 2020;168:108249.

    Article  CAS  PubMed  Google Scholar 

  10. Ong SB, Katwadi K, Kwek XY, Ismail NI, Chinda K, Ong SG, et al. Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin Ther Targets. 2018;22:247–61.

    Article  CAS  PubMed  Google Scholar 

  11. Tao X, Fang Y, Huo C. Long non-coding RNA Rian protects against experimental bronchopulmonary dysplasia by sponging miR-421. Exp Ther Med. 2021;22:781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bijkerk R, Au YW, Stam W, Duijs J, Koudijs A, Lievers E, et al. Long non-coding RNAs Rian and Miat mediate myofibroblast formation in kidney fibrosis. Front Pharmacol. 2019;10:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yao P, Li YL, Chen Y, Shen W, Wu KY, Xu WH. Overexpression of long non-coding RNA Rian attenuates cell apoptosis from cerebral ischemia-reperfusion injury via Rian/miR-144-3p/GATA3 signaling. Gene. 2020;737:144411.

    Article  CAS  PubMed  Google Scholar 

  14. Liao J, Wang J, Liu Y, Li J, Duan L. Transcriptome sequencing of lncRNA, miRNA, mRNA and interaction network constructing in coronary heart disease. BMC Med Genom. 2019;12:124.

    Article  CAS  Google Scholar 

  15. Abbas N, Perbellini F, Thum T. Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol. 2020;115:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong L, Jia J, Ye G. Rian/miR-210-3p/Nfkb1 feedback loop promotes hypoxia-induced cell apoptosis in myocardial infarction through deactivating the PI3K/Akt signaling pathway. J Cardiovasc Pharmacol. 2020;76:207–15.

    Article  CAS  PubMed  Google Scholar 

  17. Ma L, Wu K, Liu K, Gu S, Wang Y, Xu Z, et al. Changes of miRNA-17-5p, miRNA-21 and miRNA-106a level during rat kidney ischemia-reperfusion injury. Zhonghua Yi Xue Za Zhi. 2015;95:1488–92.

    CAS  PubMed  Google Scholar 

  18. Chen J, Li X, Zhao F, Hu Y. HOTAIR/miR-17-5p axis is involved in the propofol-mediated cardioprotection against ischemia/reperfusion injury. Clin Inter Aging. 2021;16:621–32.

    Article  CAS  Google Scholar 

  19. Ren X, Jing YX, Zhou ZW, Yang QM. MiR-17-5p inhibits cerebral hypoxia/reoxygenationinjury by targeting PTEN through regulation of PI3K/AKT/mTOR signaling pathway. Int J Neurosci. 2020; 1–9. https://doi.org/10.1080/00207454.2020.1806836.

  20. Du W, Pan Z, Chen X, Wang L, Zhang Y, Li S, et al. By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion. Cell Physiol Biochem. 2014;34:955–65.

    Article  CAS  PubMed  Google Scholar 

  21. Ding S, Liu D, Wang L, Wang G, Zhu Y. Inhibiting MicroRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther. 2020;372:128–35.

    Article  CAS  PubMed  Google Scholar 

  22. Hu F, Zhang S, Chen X, Fu X, Guo S, Jiang Z, et al. MiR-219a-2 relieves myocardial ischemia-reperfusion injury by reducing calcium overload and cell apoptosis through HIF1alpha/NMDAR pathway. Exp Cell Res. 2020;395:112172.

    Article  CAS  PubMed  Google Scholar 

  23. Sun L, Zhu W, Zhao P, Wang Q, Fan B, Zhu Y, et al. Long noncoding RNA UCA1 from hypoxia-conditioned hMSC-derived exosomes: a novel molecular target for cardioprotection through miR-873-5p/XIAP axis. Cell Death Dis. 2020;11:696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papoutsidakis N, Arkadopoulos N, Smyrniotis V, Tzanatos H, Kalimeris K, Nastos K, et al. Early myocardial injury is an integral component of experimental acute liver failure - a study in two porcine models. Arch Med Sci. 2011;7:217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gokalp O, Eygi B, Gokalp G, Kiray M, Besir Y, Iscan S, et al. Which distant organ is most affected by lower extremity ischemia-reperfusion? Ann Vasc Surg. 2020;65:271–81.

    Article  PubMed  Google Scholar 

  26. Wang S, Yao T, Deng F, Yu W, Song Y, Chen J, et al. LncRNA MALAT1 promotes oxygen-glucose deprivation and reoxygenation induced cardiomyocytes injury through sponging miR-20b to enhance beclin1-mediated autophagy. Cardiovasc Drugs Ther. 2019;33:675–86.

    Article  CAS  PubMed  Google Scholar 

  27. Walter S, Carlsson J, Schroder R, Neuhaus KL, Sorges E, Tebbe U. Enzymatic markers of reperfusion in acute myocardial infarct. With data from the ISAM study. Herz. 1999;24:430–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wu F, Huang W, Tan Q, Guo Y, Cao Y, Shang J, et al. ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1. Cell Death Dis. 2021;12:614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  30. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.

    Article  CAS  PubMed  Google Scholar 

  31. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e050005.

    Google Scholar 

  32. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13:e0206239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–31.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou H, Wang B, Yang YX, Jia QJ, Zhang A, Qi ZW, et al. Long noncoding RNAs in pathological cardiac remodeling: a review of the update literature. Biomed Res Int. 2019;2019:7159592.

    PubMed  PubMed Central  Google Scholar 

  35. Liu L, Li J, Wang R, Wang Y, Wang G. MicroRNA-298 exacerbates myocardial ischemic injury via targeting cyclin D1. Pharmazie. 2019;74:369–73.

    CAS  PubMed  Google Scholar 

  36. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu YJ, Zheng L, Hu YW, Wang Q. Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta. 2018;476:28–37.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Huang L, Shi X, Yang L, Hua F, Ma J, et al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging. 2020;12:24270–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wan X, Huang WJ, Chen W, Xie HG, Wei P, Chen X, et al. IL-10 deficiency increases renal ischemia-reperfusion injury. Nephron Exp Nephrol. 2014;128:37–45.

    Article  CAS  PubMed  Google Scholar 

  41. Liu H, Xu D, Zhong X, Xu D, Chen G, Ge J, et al. LncRNA-mRNA competing endogenous RNA network depicts transcriptional regulation in ischaemia reperfusion injury. J Cell Mol Med. 2019;23:2272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tchakarska G, Sola B. The double dealing of cyclin D1. Cell Cycle. 2020;19:163–78.

    Article  CAS  PubMed  Google Scholar 

  43. Chen ZD, Xu L, Tang KK, Gong FX, Liu JQ, Ni Y, et al. NF-kappaB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation. Exp Cell Res. 2016;347:52–9.

    Article  CAS  PubMed  Google Scholar 

  44. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US); 2011. https://doi.org/10.17226/12910.

Download references

Acknowledgements

We thank all of the members of our team for their excellent work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The current study was approved by the Ethics Committee of Sichuan University West China Hospital. All animal experimental protocols complied with the Guide for the Care and Use of Laboratory Animals [44]. Extensive efforts were made to minimize the number and suffering of the experimental animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Yu, H., Zeng, L. et al. LncRNA Rian reduces cardiomyocyte pyroptosis and alleviates myocardial ischemia–reperfusion injury by regulating by the miR-17-5p/CCND1 axis. Hypertens Res 45, 976–989 (2022). https://doi.org/10.1038/s41440-022-00884-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-00884-6

Keywords

This article is cited by

Search

Quick links