Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal denervation: basic and clinical evidence

Abstract

Renal nerves have critical roles in regulating blood pressure and fluid volume, and their dysfunction is closely related with cardiovascular diseases. Renal nerves are composed of sympathetic efferent and sensory afferent nerves. Activation of the efferent renal sympathetic nerves induces renin secretion, sodium absorption, and increased renal vascular resistance, which lead to increased blood pressure and fluid retention. Afferent renal sensory nerves, which are densely innervated in the renal pelvic wall, project to the hypothalamic paraventricular nucleus in the brain to modulate sympathetic outflow to the periphery, including the heart, kidneys, and arterioles. The effects of renal denervation on the cardiovascular system are mediated by both efferent denervation and afferent denervation. The first half of this review focuses on basic research using animal models of hypertension and heart failure, and addresses the therapeutic effects of renal denervation for hypertension and heart failure, including underlying mechanisms. The second half of this review focuses on clinical research related to catheter-based renal denervation in patients with hypertension. Randomized sham-controlled trials using second-generation devices, endovascular radiofrequency-based devices and ultrasound-based devices are reviewed and their results are assessed. This review summarizes the basic and clinical evidence of renal denervation to date, and discusses future prospects and potential developments in renal denervation therapy for cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bohm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020;395:1444–51.

    Article  PubMed  Google Scholar 

  2. Kandzari DE, Bohm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55.

    Article  PubMed  Google Scholar 

  3. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–45.

    Article  PubMed  Google Scholar 

  4. Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet. 2021;397:2476–86.

    Article  CAS  PubMed  Google Scholar 

  5. Foss JD, Wainford RD, Engeland WC, Fink GD, Osborn JW. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Regul Integr Comp Physiol. 2015;308:R112–22.

    Article  CAS  PubMed  Google Scholar 

  6. Banek CT, Knuepfer MM, Foss JD, Fiege JK, Asirvatham-Jeyaraj N, Van Helden D, et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension. 2016;68:1415–23.

    Article  CAS  PubMed  Google Scholar 

  7. Ong J, Kinsman BJ, Sved AF, Rush BM, Tan RJ, Carattino MD, et al. Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J Neurophysiol. 2019;122:358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Milanez MIO, Veiga AC, Martins BS, Pontes RB, Bergamaschi CT, Campos RR, et al. Renal sensory activity regulates the gamma-aminobutyric acidergic inputs to the paraventricular nucleus of the hypothalamus in Goldblatt hypertension. Front Physiol. 2020;11:601237.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Solano-Flores LP, Rosas-Arellano MP, Ciriello J. Fos induction in central structures after afferent renal nerve stimulation. Brain Res. 1997;753:102–19.

    Article  CAS  PubMed  Google Scholar 

  10. Osborn JW, Foss JD. Renal nerves and long-term control of arterial pressure. Compr Physiol. 2017;7:263–320.

    Article  PubMed  Google Scholar 

  11. Zheng H, Patel KP. Integration of renal sensory afferents at the level of the paraventricular nucleus dictating sympathetic outflow. Auton Neurosci. 2017;204:57–64.

    Article  PubMed  Google Scholar 

  12. Shen XZ, Li Y, Li L, Shah KH, Bernstein KE, Lyden P, et al. Microglia participate in neurogenic regulation of hypertension. Hypertension. 2015;66:309–16.

    Article  CAS  PubMed  Google Scholar 

  13. Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, et al. Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010;56:297–303.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Wei B, Liu X, Shen XZ, Shi P. Microglia, autonomic nervous system, immunity and hypertension: is there a link? Pharmacol Res. 2020;155:104451.

    Article  CAS  PubMed  Google Scholar 

  15. Veiga AC, Milanez MIO, Ferreira GR, Lopes NR, Santos CP, De Angelis K, et al. Selective afferent renal denervation mitigates renal and splanchnic sympathetic nerve overactivity and renal function in chronic kidney disease-induced hypertension. J Hypertens. 2020;38:765–73.

    Article  CAS  PubMed  Google Scholar 

  16. Foss JD, Fiege J, Shimizu Y, Collister JP, Mayerhofer T, Wood L, et al. Role of afferent and efferent renal nerves in the development of AngII-salt hypertension in rats. Physiol Rep. 2018;6:e13602.

    Article  PubMed Central  Google Scholar 

  17. Ott C, Mahfoud F, Mancia G, Narkiewicz K, Ruilope LM, Fahy M, et al. Renal denervation in patients with versus without chronic kidney disease: results from the global SYMPLICITY Registry with follow-up data of 3 years. Nephrol Dial Transplant. 2021. https://doi.org/10.1093/ndt/gfab154. [Epub ahead of print]

  18. Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011;1:731–67.

    Article  PubMed  Google Scholar 

  19. Katsurada K, Ogoyama Y, Imai Y, Patel KP, Kario K. Renal denervation based on experimental rationale. Hypertens Res. 2021;44:1385–94.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng H, Katsurada K, Liu X, Knuepfer MM, Patel KP. Specific afferent renal denervation prevents reduction in neuronal nitric oxide synthase within the paraventricular nucleus in rats with chronic heart failure. Hypertension. 2018;72:667–75.

    Article  CAS  PubMed  Google Scholar 

  21. Katsurada K, Nandi SS, Zheng H, Liu X, Sharma NM, Patel KP. GLP-1 mediated diuresis and natriuresis are blunted in heart failure and restored by selective afferent renal denervation. Cardiovascular Diabetol. 2020;19:57.

    Article  CAS  Google Scholar 

  22. DiBona GF, Herman PJ, Sawin LL. Neural control of renal function in edema-forming states. Am J Physiol Regul Integr Comp Physiol. 1988;254:R1017–24.

    Article  CAS  Google Scholar 

  23. Zheng H, Li YF, Zucker IH, Patel KP. Exercise training improves renal excretory responses to acute volume expansion in rats with heart failure. Am J Physiol Ren Physiol. 2006;291:F1148–56.

    Article  CAS  Google Scholar 

  24. Katsurada K, Nandi SS, Sharma NM, Zheng H, Liu X, Patel KP. Does glucagon-like peptide-1 induce diuresis and natriuresis by modulating afferent renal nerve activity? Am J Physiol Ren Physiol. 2019;317:F1010–21.

    Article  Google Scholar 

  25. Zheng H, Liu X, Katsurada K, Patel KP. Renal denervation improves sodium excretion in rats with chronic heart failure: effects on expression of renal ENaC and AQP2. Am J Physiol Heart Circ Physiol. 2019;317:H958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng H, Liu X, Sharma NM, Li Y, Pliquett RU, Patel KP. Urinary proteolytic activation of renal epithelial Na+ channels in chronic heart failure. Hypertension. 2016;67:197–205.

    Article  CAS  PubMed  Google Scholar 

  27. Kwon TH, Nielsen J, Knepper MA, Frokiaer J, Nielsen S. Angiotensin II AT1 receptor blockade decreases vasopressin-induced water reabsorption and AQP2 levels in NaCl-restricted rats. Am J Physiol Ren. Physiol 2005;288:F673–84.

    Article  CAS  Google Scholar 

  28. Katsurada K, Nandi SS, Sharma NM, Patel KP. Enhanced expression and function of renal SGLT2 (Sodium-Glucose Cotransporter 2) in heart failure: role of renal nerves. Circ Heart Fail. 2021. https://doi.org/10.1161/CIRCHEARTFAILURE.121.008365.

  29. Sharp TE 3rd, Polhemus DJ, Li Z, Spaletra P, Jenkins JS, Reilly JP, et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J Am Coll Cardiol. 2018;72:2609–21.

    Article  PubMed  Google Scholar 

  30. Liu X, Patel KP, Zheng H. Role of renal sympathetic nerves in GLP-1 (Glucagon-Like Peptide-1) receptor agonist exendin-4-mediated diuresis and natriuresis in diet-induced obese rats. J Am Heart Assoc. 2021;10:e022542.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  32. Kandzari DE, Mahfoud F, Bhatt DL, Bohm M, Weber MA, Townsend RR, et al. Confounding factors in renal denervation trials: revisiting old and identifying new challenges in trial design of device therapies for hypertension. Hypertension. 2020;76:1410–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kario K, Kim BK, Aoki J, Wong AY, Lee YH, Wongpraparut N, et al. Renal denervation in Asia: consensus statement of the Asia renal denervation consortium. Hypertension. 2020;75:590–602.

    Article  CAS  PubMed  Google Scholar 

  34. Weber MA, Mahfoud F, Schmieder RE, Kandzari DE, Tsioufis KP, Townsend RR, et al. Renal denervation for treating hypertension: current scientific and clinical evidence. JACC Cardiovasc Interv. 2019;12:1095–105.

    Article  PubMed  Google Scholar 

  35. Townsend RR, Walton A, Hettrick DA, Hickey GL, Weil J, Sharp ASP, et al. Review and meta-analysis of renal artery damage following percutaneous renal denervation with radiofrequency renal artery ablation. EuroIntervention. 2020;16:89–96.

    Article  PubMed  Google Scholar 

  36. Mahfoud F, Bohm M, Schmieder R, Narkiewicz K, Ewen S, Ruilope L, et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the Global SYMPLICITY Registry. Eur Heart J. 2019;40:3474–82.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mahfoud F, Mancia G, Schmieder R, Narkiewicz K, Ruilope L, Schlaich M, et al. Renal denervation in high-risk patients with hypertension. J Am Coll Cardiol. 2020;75:2879–88.

    Article  PubMed  Google Scholar 

  38. Kario K, Yokoi Y, Okamura K, Fujihara M, Ogoyama Y, Yamamoto E, et al. Catheter-based ultrasound renal denervation in patients with resistant hypertension: the randomized, controlled REQUIRE trial. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00754-7. [Epub ahead of print]

  39. Ogoyama Y, Tada K, Abe M, Nanto S, Shibata H, Mukoyama M, et al. Effects of renal denervation on blood pressures in patients with hypertension: a systematic review and meta-analysis of randomized sham-controlled trials. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00761-8. [Epub ahead of print]

  40. Bohm M, Mahfoud F, Townsend RR, Kandzari DE, Pocock S, Ukena C, et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J. 2019;40:743–51.

    Article  PubMed  Google Scholar 

  41. Mahfoud F, Townsend RR, Kandzari DE, Kario K, Schmieder RE, Tsioufis K, et al. Changes in plasma renin activity after renal artery sympathetic denervation. J Am Coll Cardiol. 2021;77:2909–19.

    Article  CAS  PubMed  Google Scholar 

  42. Kario K, Kagitani H, Hayashi S, Hanamura S, Ozawa K, Kanegae H. A Japan nationwide web-based survey of patient preference for renal denervation for hypertension treatment. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00760-9. [Epub ahead of print]

  43. de Jong MR, Adiyaman A, Gal P, Smit JJ, Delnoy PP, Heeg JE, et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension. 2016;68:707–14.

    Article  PubMed  Google Scholar 

  44. Qian PC, Barry MA, Lu J, Pouliopoulos J, Mina A, Bandodkar S, et al. Transvascular pacing of aorticorenal ganglia provides a testable procedural endpoint for renal artery denervation. JACC Cardiovasc Interv 2019;12:1109–20.

    Article  PubMed  Google Scholar 

  45. Tsioufis KP, Feyz L, Dimitriadis K, Konstantinidis D, Tousoulis D, Voskuil M, et al. Safety and performance of diagnostic electrical mapping of renal nerves in hypertensive patients. EuroIntervention. 2018;14:e1334–42.

    Article  PubMed  Google Scholar 

  46. Singh RR, McArdle ZM, Iudica M, Easton LK, Booth LC, May CN, et al. Sustained decrease in blood pressure and reduced anatomical and functional reinnervation of renal nerves in hypertensive sheep 30 months after catheter-based renal denervation. Hypertension. 2019;73:718–27.

    Article  CAS  PubMed  Google Scholar 

  47. Mulder J, Hokfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2013;304:R675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kario K, Yamamoto E, Tomita H, Okura T, Saito S, Ueno T, et al. Sufficient and persistent blood pressure reduction in the final long-term results from SYMPLICITY HTN-Japan- safety and efficacy of renal denervation at 3 years. Circ J. 2019;83:622–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kario K, Ito S, Itoh H, Rakugi H, Okuda Y, Yamakawa S. Effect of esaxerenone on nocturnal blood pressure and natriuretic peptide in different dipping phenotypes. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00756-5. [Epub ahead of print]

  50. Kario K, Williams B. Nocturnal hypertension and heart failure: mechanisms, evidence, and new treatments. Hypertension. 2021;78:564–77.

    Article  CAS  PubMed  Google Scholar 

  51. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime blood pressure phenotype and cardiovascular prognosis: practitioner-based nationwide JAMP study. Circulation. 2020;142:1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Narita K, Hoshide S, Kario K. Association of treatment-resistant hypertension defined by home blood pressure monitoring with cardiovascular outcome. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00757-4. [Epub ahead of print]

  53. Kario K, Sakima A, Ohya Y. STEP to estimate cardiovascular events by home blood pressure in the era of digital hypertension. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00764-5. [Epub ahead of print]

  54. Kario K, Hettrick DA, Prejbisz A, Januszewicz A. Obstructive sleep apnea-induced neurogenic nocturnal hypertension: a potential role of renal denervation? Hypertension. 2021;77:1047–60.

    Article  CAS  PubMed  Google Scholar 

  55. Kario K, Weber MA, Mahfoud F, Kandzari DE, Schmieder RE, Kirtane AJ, et al. Changes in 24-hour patterns of blood pressure in hypertension following renal denervation therapy. Hypertension. 2019;74:244–9.

    Article  CAS  Google Scholar 

  56. Steinberg JS, Shabanov V, Ponomarev D, Losik D, Ivanickiy E, Kropotkin E, et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA. 2020;323:248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Younis A, Steinberg JS. Renal denervation for patients with atrial fibrillation. Curr Cardiol Rep. 2021;23:126.

    Article  PubMed  Google Scholar 

  58. Kario K, Hoshide S, Narita K, Okawara Y, Kanegae H. Investigators’ network. Cardiovascular prognosis in drug-resistant hypertension stratified by 24-hour ambulatory blood pressure: the JAMP study. Hypertension. 2021;78:1781–90.

    Article  CAS  PubMed  Google Scholar 

  59. Kario K, Wang TD. Perspectives of renal denervation from hypertension to heart failure in Asia. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00751-w. [Epub ahead of print]

  60. Sharp TE 3rd, Lefer DJ. Renal denervation to treat heart failure. Annu Rev Physiol. 2021;83:39–58.

    Article  CAS  PubMed  Google Scholar 

  61. Lian Z, Yu SR, Song JX, Lee CY, Li SF, Cui YX, et al. Efficacy and safety of catheter-based renal denervation for heart failure with reduced ejection fraction: a systematic review and meta-analysis. Clin Auton Res. 2020;30:521–30.

    Article  PubMed  Google Scholar 

  62. Kresoja KP, Rommel KP, Fengler K, von Roeder M, Besler C, Lucke C, et al. Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2021;14:e007421.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuomi Kario.

Ethics declarations

Conflict of interest

K. Kario received speaker fees and works as a consultant to JIMRO Co., Ltd., Medtronic Co. Inc. and Terumo Co. Inc. SN received a consultant fee from JIMRO Co., Ltd. KS was supported by grants from Daiichi Sankyo and Nippon Boehringer Ingelheim. The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsurada, K., Shinohara, K., Aoki, J. et al. Renal denervation: basic and clinical evidence. Hypertens Res 45, 198–209 (2022). https://doi.org/10.1038/s41440-021-00827-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00827-7

Keywords

This article is cited by

Search

Quick links