Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A SAGE score cutoff that predicts high-pulse wave velocity as measured by oscillometric devices in Brazilian hypertensive patients

Abstract

We aimed to identify the optimal cutoff SAGE score for Brazilian hypertensive patients who had their pulse wave velocity (PWV) measured with oscillometric devices. A retrospective analysis of patients who underwent central blood pressure measurement using a validated oscillometric device, the Mobil-O-Graph® (IEM, Stolberg, Germany), between 2012 and 2019 was performed. Patients with arterial hypertension and available data on all SAGE parameters were selected. An ROC curve was constructed using the Youden index to define the best score to identify patients at high risk for high PWV. A total of 837 patients met the criteria for SAGE and diagnosis of hypertension. The median age was 59.0 years (interquartile range [IQR]: 47.0–68.0), and 50.7% of the patients were women. The following comorbidities and conditions were present: dyslipidemia (37.4%), diabetes (20.7%), a body mass index score ≥30 kg/m2 (36.6%), use of antihypertensive drugs (69.5%), and smoking (18.3%). The median peripheral blood pressure was 128 mmHg (IQR: 117–138 mmHg) for systolic and 81 mmHg (IQR: 73–90 mmHg) for diastolic blood pressure. The median PWV was 8.3 m/s (7.1–9.8 m/s), and the prevalence of high PWV (≥10 m/s) was 22.9% (192 patients). A cutoff SAGE score ≥8 was effective at identifying a high risk of PWV ≥ 10 m/s, achieving 67.19% sensitivity (95% CI: 60.1–73.8) and 93.95% specificity (95% CI: 91.8–95.7). With this cutoff point, 1 out of every 5 treated hypertensive patients would be referred for a PWV measurement. A SAGE score of ≥8 identified Brazilian hypertensive patients with a high risk of future cardiovascular events (PWV ≥ 10 m/s).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Laurent S, Hulot J-S, Boutouyrie P. Role of central blood pressure and arterial stiffening. hypertension and cardiovascular protection [Internet]. 2019 [cited 2021 Aug 10];135–54. Available from: https://doi.org/10.1007/978-3-319-93320-7_9

  2. Laurent S, Boutouyrie P, Cunha PG, Lacolley P, Nilsson PM. Concept of extremes in vascular aging: from early vascular aging to supernormal vascular aging. Hypertension 2019;74:218–28.

    Article  CAS  Google Scholar 

  3. Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: A tale of eva and ADAM in cardiovascular risk assessment and prevention. Hypertension 2009;54:3–10.

    Article  CAS  Google Scholar 

  4. Chirinos JA, Segers P, Hughes T, Townsend R. Large-Artery stiffness in health and disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;74:1237–63.

    Article  Google Scholar 

  5. Oliveira A, Barroso W. Arterial stiffness–a novel cardiovascular risk factor. Braz J Hypertension [Internet] 2020;27:13–7. http://departamentos.cardiol.br/sbc-dha/profissional/revista/27-1/L7_REVISTA%20HIPERTENSAO%2027%20N1-1.pdf [cited 2021 Jan 2] Available from

    Google Scholar 

  6. Barroso W, Barbosa E, Mota-Gomes A. Rigidez arterial e hemodinâmica central: do endotélio à camada média. 1st ed. Vol. 1. São Paulo: Athos Mais Editora; 2020. p. 11–62.

  7. Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andrés V. Biological versus chronological aging: JACC focus seminar. J Am Coll Cardiol. 2020;75:919–30.

    Article  CAS  Google Scholar 

  8. Lacolley P, Regnault V, Laurent S. Mechanisms of arterial stiffening: from mechanotransduction to epigenetics. Arterioscler Thromb Vasc Biol. 2020;40:1055–62.

    Article  CAS  Google Scholar 

  9. McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35:1719–25.

    Article  Google Scholar 

  10. Vlachopoulos C, Xaplanteris P, Aboyans V, Brodmann M, Cífková R, Cosentino F, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation. Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Vol. 241, Atherosclerosis. Elsevier Ireland Ltd; 2015. p. 507–32.

  11. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension 2015;66:698–722.

    Article  CAS  Google Scholar 

  12. Xaplanteris P, Vlachopoulos C, Protogerou AD, Aznaouridis K, Terentes-Printzios D, Argyris AA, et al. A clinical score for prediction of elevated aortic stiffness: Derivation and validation in 3943 hypertensive patients. J Hypertens. 2019;37:339–46.

    Article  CAS  Google Scholar 

  13. Tomiyama H, Vlachopoulos C, Xaplanteris P, Nakano H, Shiina K, Ishizu T, et al. Usefulness of the SAGE score to predict elevated values of brachial-ankle pulse wave velocity in Japanese subjects with hypertension. Hypertension Res. 2020;43:1284–92.

    Article  Google Scholar 

  14. Levin A, Stevens PE, Bilous RW, Coresh J, de Francisco ALM, de Jong PE, et al. Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements. 2013;3.

  15. Barroso WKS, Rodrigues CS, Bortolotto LA, Gomes MM, Felice Castro Issa A, Ramos Nascimento B, et al. Diretrizes Diretrizes Brasileiras de Hipertensão Arterial-2020. Arq Bras Cardiol [Internet]. 2021;116:516–658. https://doi.org/10.36660/abc.20201238. Available from

    Article  Google Scholar 

  16. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). Blood Pressure. 2018;27:314–40.

  17. Segers P, Rietzschel ER, Chirinos JA. How to measure arterial stiffness in humans. Arterioscler Thromb Vasc Biol. 2020;40:1034–43.

    Article  CAS  Google Scholar 

  18. Paiva AMG, Mota-Gomes MA, Brandão AA, Silveira FS, Silveira MS, Okawa RTP, et al. Reference values of office central blood pressure, pulse wave velocity, and augmentation index recorded by means of the Mobil‐O‐Graph PWA monitor. Hypertens Res. 2020 Nov;43:1239–48.

    Article  Google Scholar 

  19. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension 2011;58:825–32.

    Article  CAS  Google Scholar 

  20. Weiss W, Gohlisch C, Harsch-Gladisch C, Tölle M, Zidek W, van der Giet M. Oscillometric estimation of central blood pressure: Validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Press Monit. 2012;17:128–31.

    Article  Google Scholar 

  21. Laurent SL, Cockcroft J, van Bortel L, Boutouyrie P. Expert consensus document on arterial stiffness:methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  Google Scholar 

  22. Vlachopoulos C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    Article  Google Scholar 

  23. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  Google Scholar 

  24. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD Epidemiology Collaboration (CKD-EPI) Equation for Japanese: Accuracy and Use for Population Estimates. Am J Kidney Dis. 2010;56:32–8.

    Article  Google Scholar 

  25. Ohkuma T, Tomiyama H, Ninomiya T, Kario K, Hoshide S, Kita Y, et al. Proposed cutoff value of brachial-ankle pulse wave velocity for the management of hypertension. Circ J. 2017;81:1540–2.

    Article  Google Scholar 

  26. Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometric estimation of aortic pulse wave velocity: Comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18:173–6.

    Article  Google Scholar 

  27. Brett SE, Guilcher A, Clapp B, Chowienczyk P. Estimating central systolic blood pressure during oscillometric determination of blood pressure: Proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry. Blood Press Monit. 2012;17:132–6.

    Article  Google Scholar 

  28. Kunz Sebba Barroso W, Ferreira Gonçalves C, Costa Berigó JA, Andrade Melo M, Arantes AC, de Souza Lelis E, et al. Tonometric and oscillometric methods for measurement of central blood pressure parameters: a comparison in patients with borderline hypertension or stage 1 hypertension. Int J Cardiovasc Sci. 2020;33:145–50.

  29. Stoner L, Lambrick DM, Westrupp N, Young J, Faulkner J. Validation of oscillometric pulse wave analysis measurements in children. Am J Hypertens. 2014;27:865–72.

    Article  Google Scholar 

  30. Sarafidis PA, Georgianos PI, Karpetas A, Bikos A, Korelidou L, Tersi M, et al. Evaluation of a novel brachial cuff-based oscillometric method for estimating central systolic pressure in hemodialysis patients. Am J Nephrol. 2014;40:242–50.

    Article  Google Scholar 

  31. Barroso WKS, Melo M de A, Vitorino PV, Gonçalves C, Berigó JA, et al. Carotid intima and media thickness correlation with central blood pressure measurements by tonometric and oscillometric methods: a proof of concept. Int J Cardiovasc Sci. 2020;34:22–9.

  32. Gómez-Choco M, García-Sánchez SM, Font MÀ, Mengual JJ, Blanch P, Castellanos P, et al. Biomarkers levels and brachial and central blood pressure during the subacute phase of lacunar stroke and other ischemic stroke subtypes. J Hum Hypertens. 2020;34:404–10.

    Article  Google Scholar 

  33. Fagundes RR, Vitorino PVO, de Souza Lelis E, Veiga Jardim PCB, Souza ALL, de Souza Veiga Jardim T, et al. Relationship between pulse wave velocity and cardiovascular biomarkers in patients with risk factors. Arq Bras Cardiol. 2020;115:1125–32.

    Article  Google Scholar 

  34. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: The framingham heart study. Circulation 2010;121:505–11.

    Article  Google Scholar 

  35. Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, Torp-Petersen C, et al. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur Heart J. 2010;31:883–91.

    Article  Google Scholar 

  36. Cândido JSA, Camelo LV, Mill JG, Lotufo PA, Ribeiro ALP, Duncan BB, et al. Greater aortic stiffness is associated with renal dysfunction in participants of the ELSA-Brasil cohort with and without hypertension and diabetes. PLoS ONE. 2019;14:e0210522.

    Article  Google Scholar 

  37. Menezes ST, Giatti L, Colosimo EA, Ribeiro ALP, Brant LCC, Viana MC, et al. Aortic stiffness and age with cognitive performance decline in the elsa-brasil cohort. J Am Heart Assoc. 2019;8:e013248.

    Article  Google Scholar 

  38. Galvão RDV, Pereira C, de S, Freitas EGB, Lima DRART, Santos WAM, et al. Association between diabetes mellitus and central arterial stiffness in elderly patients with systemic arterial hypertension. Clin Exp Hypertens. 2020;42:728–32.

    Article  Google Scholar 

  39. Avolio AP, Kuznetsova T, Heyndrickx GR, Kerkhof PLM, Li JKJ. Arterial flow, pulse pressure and pulse wave velocity in men and women at various ages. In: Advances in Experimental Medicine and Biology. New York: Springer New York LLC; 2018. p. 153–68.

  40. Goel A, Maroules CD, Mitchell GF, Peshock R, Ayers C, McColl R, et al. Ethnic difference in proximal aortic stiffness: an observation from the Dallas Heart Study. JACC Cardiovasc Imaging. 2017;10:54–61.

    Article  Google Scholar 

  41. Ministério da Saúde, Secretaria de Políticas de Saúde. Manual de doenças mais importantes, por razões étnicas, na população brasileira afro-descendente. Vol. Série A, Normas e Manuais Técnicos. Brasilia: Ministério da Saúde; 2001. p. 1–80.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Camargo Oliveira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.C., Barroso, W.K.S., de Oliveira Vitorino, P.V. et al. A SAGE score cutoff that predicts high-pulse wave velocity as measured by oscillometric devices in Brazilian hypertensive patients. Hypertens Res 45, 315–323 (2022). https://doi.org/10.1038/s41440-021-00793-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00793-0

Keywords

Search

Quick links