Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circulating fibroblast growth factor 21 links hemodynamics with kidney function in middle-aged and older adults: A mediation analysis

Abstract

Altered hemodynamics are commonly observed in individuals with declining renal function; however, the pathophysiological mechanisms linking renal dysfunction and hemodynamics have not been fully elucidated. Fibroblast growth factor 21 (FGF21), which upregulates sympathetic nerve activity, can alter systemic hemodynamics, and its level can increase as renal function declines. This study aimed to determine the associations among circulating FGF21 levels, hemodynamics, and renal function in middle-aged and older adults. In a total of 272 middle-aged and older adults (age range: 46–83 years), estimated glomerular filtration rate (eGFR), hemodynamics (brachial and aortic blood pressure and aortic pulse wave velocity [PWV]), and serum FGF21 levels were measured. For mediation analysis, hemodynamic parameters were entered as outcomes. eGFR or log-transformed urinary albumin and creatinine ratio (UACR) and log-transformed serum FGF21 levels were set as the predictors and mediator, respectively. According to multivariable regression models after adjusting for potential covariates, serum FGF21 levels were significantly associated with brachial systolic blood pressure (β = 0.140), pulse pressure (β = 0.136), and aortic PWV (β = 0.144). Mediation analyses showed that serum FGF21 levels significantly mediated the relationship of eGFR with brachial systolic blood pressure (indirect effect [95% confidence interval]: −0.032 [−0.071, −0.002]), pulse pressure (−0.019 [−0.041, −0.001]), and aortic PWV (−0.457 [−1.053, −0.021]) and the relationship of UACR with aortic PWV (7.600 [0.011, 21.148]). These findings suggest that elevated circulating FGF21 levels partially mediate the association of elevated blood pressure and/or aortic stiffness with renal dysfunction in middle-aged and older adults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data sharing

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Itoh N, Ornitz DM. Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J Biochem. 2011;149:121–30.

    Article  CAS  PubMed  Google Scholar 

  2. Cuevas-Ramos D, Almeda-Valdes P, Aguilar-Salinas CA, Cuevas-Ramos G, Cuevas-Sosa AA, Gomez-Perez FJ. The role of fibroblast growth factor 21 (FGF21) on energy balance, glucose and lipid metabolism. Curr Diabetes Rev. 2009;5:216–20.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 2012;1:e00065–e00065.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lakhani I, Gong M, Wong WT, Bazoukis G, Lampropoulos K, Wong SH, et al. Fibroblast growth factor 21 in cardio-metabolic disorders: A systematic review and meta-analysis. Metabolism 2018;83:11–7.

    Article  CAS  PubMed  Google Scholar 

  5. Ong KL, Hui N, Januszewski AS, Kaakoush NO, Xu A, Fayyad R, et al. High plasma FGF21 levels predicts major cardiovascular events in patients treated with atorvastatin (from the treating to new targets [TNT] study). Metabolism 2019;93:93–9.

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Qian L, Zhang L, Zhang J, Zhou J, Li Y, et al. Fibroblast growth factor 21 is related to atherosclerosis independent of nonalcoholic fatty liver disease and predicts atherosclerotic cardiovascular events. J American Heart Association. 2020(e-pub ahead of print 2020/05/21;https://doi.org/10.1161/jaha.119.015226):e015226.

  7. Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides 2007;28:2382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sa-Nguanmoo P, Chattipakorn N, Chattipakorn SC. Potential roles of fibroblast growth factor 21 in the brain. Metab Brain Dis. 2016;31:239–48.

    Article  CAS  PubMed  Google Scholar 

  9. Turner T, Chen X, Zahner M, Opsahl A, DeMarco G, Boucher M, et al. FGF21 increases water intake, urine output and blood pressure in rats. PloS One. 2018;13:e0202182.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim AM, Somayaji VR, Dong JQ, Rolph TP, Weng Y, Chabot JR, et al. Once-weekly administration of a long-acting fibroblast growth factor 21 analogue modulates lipids, bone turnover markers, blood pressure and body weight differently in obese people with hypertriglyceridaemia and in non-human primates. Diabetes Obes Metab. 2017;19:1762–72.

    Article  CAS  PubMed  Google Scholar 

  11. Anuwatmatee S, Tang S, Wu BJ, Rye K-A, Ong KL. Fibroblast growth factor 21 in chronic kidney disease. Clin Chim Acta. 2019;489:196–202.

    Article  CAS  PubMed  Google Scholar 

  12. Kohara M, Masuda T, Shiizaki K, Akimoto T, Watanabe Y, Honma S, et al. Association between circulating fibroblast growth factor 21 and mortality in end-stage renal disease. PloS One. 2017;12:e0178971.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fortier C, Sidibé A, Desjardins M-P, Marquis K, De Serres Sacha A, Mac-Way F, et al. Aortic–brachial pulse wave velocity ratio. Hypertension (Dallas, Tex: 1979) 2017;69:96–101.

    Article  CAS  Google Scholar 

  14. Kim ED, Tanaka H, Ballew SH, Sang Y, Heiss G, Coresh J, et al. Associations between kidney disease measures and regional pulse wave velocity in a large community-based cohort: The atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis. 2018;72:682–90.

    Article  PubMed  Google Scholar 

  15. Nakano T, Shiizaki K, Miura Y, Matsui M, Kosaki K, Mori S, et al. Increased fibroblast growth factor-21 in chronic kidney disease is a trade-off between survival benefit and blood pressure dysregulation. Sci Rep. 2019;9:19247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sugawara J, Hayashi K, Yokoi T, Cortez-Cooper MY, DeVan AE, Anton MA, et al. Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens. 2005;19:401–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sugawara J, Hayashi K, Yokoi T, Tanaka H. Age-associated elongation of the ascending aorta in adults. JACC: Cardiovascular Imaging. 2008;1:739–48.

    PubMed  Google Scholar 

  18. Kosaki K, Sugawara J, Zempo-Miyaki A, Maeda S. Impact of leg heating on central hemodynamics in postmenopausal women. Artery Res. 2018;21:53–7.

    Article  Google Scholar 

  19. Tagawa K, Choi Y, Ra SG, Yoshikawa T, Kumagai H, Maeda S. Resistance training-induced decrease in central arterial compliance is associated with decreased subendocardial viability ratio in healthy young men. Appl Physiol Nutr, Metab = Physiologie Appl, Nutr et Metab. 2018;43:510–6.

    Article  Google Scholar 

  20. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  21. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis. 2013;61:197–203.

    Article  CAS  PubMed  Google Scholar 

  22. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Performance of GFR equations in Japanese subjects. Clin Exp Nephrol. 2013;17:352–8.

    Article  CAS  PubMed  Google Scholar 

  23. Lee Y, Lim S, Hong ES, Kim JH, Moon MK, Chun EJ, et al. Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status. Clin Endocrinol. 2014;80:57–64.

    Article  CAS  Google Scholar 

  24. Li H, Fang Q, Gao F, Fan J, Zhou J, Wang X, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010;53:934–40.

    Article  CAS  PubMed  Google Scholar 

  25. Jin QR, Bando Y, Miyawaki K, Shikama Y, Kosugi C, Aki N, et al. Correlation of fibroblast growth factor 21 serum levels with metabolic parameters in Japanese subjects. J Med Investig: JMI. 2014;61:28–34.

    Article  Google Scholar 

  26. Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 2009;32:1542–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hayes AF Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford publications 2017.

  28. Díez-Fernández A, Sánchez-López M, Nieto JA, González-García A, Miota-Ibarra J, Ortiz-Galeano I, et al. Relationship between cardiorespiratory fitness and blood pressure in young adults: a mediation analysis of body composition. Hypertens Res: Off J Jpn Soc Hypertens. 2017;40:511–5.

    Article  Google Scholar 

  29. MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Annu Rev Psychol. 2007;58:593–614.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO4,Ca × PO4 Product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12:2131.

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: The framingham heart study. Circulation 2010;121:505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: A systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  PubMed  Google Scholar 

  33. Hindricks J, Ebert T, Bachmann A, Kralisch S, Lossner U, Kratzsch J, et al. Serum levels of fibroblast growth factor-21 are increased in chronic and acute renal dysfunction. Clin Endocrinol. 2014;80:918–24.

    Article  CAS  Google Scholar 

  34. Jian W-X, Peng W-H, Jin J, Chen X-R, Fang W-J, Wang W-X, et al. Association between serum fibroblast growth factor 21 and diabetic nephropathy. Metabolism 2012;61:853–9.

    Article  CAS  PubMed  Google Scholar 

  35. Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19:1147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20:670–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie T, Leung PS. Fibroblast growth factor 21: A regulator of metabolic disease and health span. Am J Physiol Endocrinol Metab. 2017;313:E292–e302.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 2010;59:2781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geng L, Liao B, Jin L, Huang Z, Triggle CR, Ding H, et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep. 2019;26:2738–52.e2734.

    Article  CAS  PubMed  Google Scholar 

  40. Xiao Y, Liu L, Xu A, Zhou P, Long Z, Tu Y, et al. Serum fibroblast growth factor 21 levels are related to subclinical atherosclerosis in patients with type 2 diabetes. Cardiovascular Diabetol. 2015;14:72–2.

    Article  CAS  Google Scholar 

  41. Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology 2012;153:4238–45.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Meng C, Wang Y, Huang H, Liu W, Zhang JF, et al. IL-1beta inhibits beta-Klotho expression and FGF19 signaling in hepatocytes. Am J Physiol Endocrinol Metab. 2016;310:E289–300.

    Article  PubMed  Google Scholar 

  43. Paloian NJ, Giachelli CM. A current understanding of vascular calcification in CKD. Am J Physiol-Ren Physiol. 2014;307:F891–F900.

    Article  CAS  Google Scholar 

  44. Ohno Y, Kanno Y, Takenaka T. Central blood pressure and chronic kidney disease. World J Nephrol. 2016;5:90–100.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nelson AJ, Raggi P, Wolf M, Gold AM, Chertow GM, Roe MT. Targeting vascular calcification in chronic kidney disease. JACC: Basic Transl Sci. 2020;5:398–412.

    Google Scholar 

  46. Fang Y, Ginsberg C, Sugatani T, Monier-Faugere M-C, Malluche H, Hruska KA. Early chronic kidney disease–mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85:142–50.

    Article  CAS  PubMed  Google Scholar 

  47. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: From physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251.

    Article  CAS  PubMed  Google Scholar 

  48. Woo YC, Lee CH, Fong CH, Xu A, Tso AW, Cheung BM, et al. Serum fibroblast growth factor 21 is a superior biomarker to other adipokines in predicting incident diabetes. Clin Endocrinol. 2017;86:37–43.

    Article  CAS  Google Scholar 

  49. Matsui M, Kosaki K, Tanahashi K, Akazawa N, Osuka Y, Tanaka K, et al. Relationship between physical activity and circulating fibroblast growth factor 21 in middle-aged and older adults. Exp Gerontol. 2020;141:111081.

    Article  CAS  PubMed  Google Scholar 

  50. Taniguchi H, Tanisawa K, Sun X, Kubo T, Higuchi M. Endurance exercise reduces hepatic fat content and serum fibroblast growth factor 21 levels in elderly men. J Clin Endocrinol Metab. 2016;101:191–8.

    Article  CAS  PubMed  Google Scholar 

  51. Yang SJ, Hong HC, Choi HY, Yoo HJ, Cho GJ, Hwang TG, et al. Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. Clin Endocrinol. 2011;75:464–9.

    Article  CAS  Google Scholar 

  52. Tok Ö, Kişioğlu SV, Ersöz HÖ, Kahveci B, Göktaş Z. Effects of increased physical activity and/or weight loss diet on serum myokine and adipokine levels in overweight adults with impaired glucose metabolism. J Diabetes Complications. 2021;35:107892.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the research members of SM’s laboratory and Michiru Hotta (University of Tsukuba) for their assistance in collecting the data.

Funding

This work was supported in part by the KAKENHI Grant of Japan Society for the Promotion of Science (19H03995), a Grant-in-Aid for Research Fellowships of Japan Society for the Promotion of Science for Young Scientists (20J20892), and a grant from the advanced research initiative for human high performance (ARIHHP), University of Tsukuba.

Author information

Authors and Affiliations

Authors

Contributions

MM: investigation, formal analysis, and writing—original draft. KK: conceptualization, investigation. MK: writing—review and editing. CS: writing—review and editing. KY: writing—review and editing. SM: funding acquisition, project administration, supervision, and writing—review and editing

Corresponding author

Correspondence to Seiji Maeda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, M., Kosaki, K., Kuro-o, M. et al. Circulating fibroblast growth factor 21 links hemodynamics with kidney function in middle-aged and older adults: A mediation analysis. Hypertens Res 45, 125–134 (2022). https://doi.org/10.1038/s41440-021-00782-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00782-3

Keywords

This article is cited by

Search

Quick links