Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Egg provisioning explains the penetrance of symbiont-mediated sex allocation distortion in haplodiploids

Abstract

Maternally transmitted symbionts such as Wolbachia can alter sex allocation in haplodiploid arthropods. By biasing population sex ratios towards females, these changes in sex allocation may facilitate the spread of symbionts. In contrast to symbiont-induced cytoplasmic incompatibility (CI), the mechanisms that underpin sex allocation distortion remain poorly understood. Using a nuclear genotype reference panel of the haplodiploid mite Tetranychus urticae and a single Wolbachia variant that is able to simultaneously induce sex allocation distortion and CI, we unraveled the mechanistic basis of Wolbachia-mediated sex allocation distortion. Host genotype was an important determinant for the strength of sex allocation distortion. We further show that sex allocation distortion by Wolbachia in haplodiploid mites is driven by increasing egg size, hereby promoting egg fertilization. This change in reproductive physiology was also coupled to increased male and female adult size. Our results echo previous work on Cardinium symbionts, suggesting that sex allocation distortion by regulating host investment in egg size is a common strategy among symbionts that infect haplodiploids. To better understand the relevance that sex allocation distortion may have for the spread of Wolbachia in natural haplodiploid populations, we parametrized a model based on generated phenotypic data. Our simulations show that empirically derived levels of sex allocation distortion can be sufficient to remove invasion thresholds, allowing CI to drive the spread of Wolbachia independently of the initial infection frequency. Our findings help elucidate the mechanisms that underlie the widespread occurrence of symbionts in haplodiploid arthropods and the evolution of sex allocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wolbachia induce two distinct reproductive phenotypes in Tetranychus mites.
Fig. 2: Wolbachia-mediated sex allocation distortion is contingent on the host nuclear genotype.
Fig. 3: Effects of Wolbachia infection on fecundity depend on the host nuclear genotype.
Fig. 4: Wolbachia distort sex allocation in Tetranychus mites by regulating egg provisioning.
Fig. 5: Wolbachia-induced size difference can persist into the adult stage of Tetranychus mites.
Fig. 6: Distortion of host sex allocation is expected to facilitate Wolbachia invasion.

Similar content being viewed by others

References

  • Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D, Merçot H et al. (2019) The toxin–antidote model of cytoplasmic incompatibility: genetics and evolutionary implications. Trends Genet 35:175–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann JF, Ronau JA, Hochstrasser M (2017) A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2:17007

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckmann JF, Van Vaerenberghe K, Akwa DE, Cooper BS (2021) A single mutation weakens symbiont-induced reproductive manipulation through reductions in deubiquitylation efficiency. Proc Natl Acad Sci USA 118:e2113271118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bing X, Lu Y, Xia C, Xia X, Hong X (2020) Transcriptome of Tetranychus urticae embryos reveals insights into Wolbachia‐induced cytoplasmic incompatibility. Insect Mol Biol 29:193–204

    Article  CAS  PubMed  Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9:378–400

  • Cattel J, Nikolouli K, Andrieux T, Martinez J, Jiggins F, Charlat S et al. (2018) Back and forth Wolbachia transfers reveal efficient strains to control spotted wing drosophila populations (J Beggs, Ed.). J Appl Ecol 55:2408–2418

    Article  Google Scholar 

  • Crawley M (2007) The R book. John Wiley & Sons: Hoboken, NJ

  • Cruz MA, Magalhães S, Sucena É, Zélé F (2021) Wolbachia and host intrinsic reproductive barriers contribute additively to postmating isolation in spider mites. Evolution 75:2085–2101

    Article  PubMed  Google Scholar 

  • Egas M, Vala F, Hans Breeuwer JAJ (2002) On the evolution of cytoplasmic incompatibility in haplodiploid species. Evolution 56:1101–1109

    PubMed  Google Scholar 

  • Enders MM (1993) The effect of male size and operational sex ratio on male mating success in the common spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Anim Behav 46:835–846

    Article  Google Scholar 

  • Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149

    Article  Google Scholar 

  • Feiertag-Koppen CCM, Pijnacker LP (1982) Development of the female germ cells and process of internal fertilization in the two-spotted spider mite Tetranychus urticae koch (Acariformes: Tetranychidae). Int J Insect Morphol Embryol 11:271–284

    Article  Google Scholar 

  • Fujii Y, Kageyama D, Hoshizaki S, Ishikawa H, Sasaki T (2001) Transfection of Wolbachia in Lepidoptera: the feminizer of the adzuki bean borer Ostrinia scapulalis causes male killing in the Mediterranean flour moth Ephestia kuehniella. Proc R Soc Lond B 268:855–859

    Article  CAS  Google Scholar 

  • Gebiola M, Giorgini M, Kelly SE, Doremus MR, Ferree PM, Hunter MS (2017) Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia. Proc R Soc B 284:20171433

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong J-T, Li Y, Li T-P, Liang Y, Hu L, Zhang D et al.(2020) Stable Introduction of Plant-Virus-Inhibiting Wolbachia into Planthoppers for Rice Protection. Curr Biol. 30:4837–4845.e5

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20

    Article  CAS  PubMed  Google Scholar 

  • Helle W (1967) Fertilization in the two-spotted spider mite (Tetranychus urticae: ACARI). Entomol Exp Appl 10:103–110

    Article  Google Scholar 

  • Helle W, Sabelis MW (1985) Spider mites. Their biology, natural enemies, and control. Elsevier, Amsterdam

    Google Scholar 

  • Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE et al. (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci 107:769–774

    Article  CAS  PubMed  Google Scholar 

  • Jones DR (2005) Plant viruses transmitted by thrips. Eur J Plant Pathol 113:119–157

    Article  Google Scholar 

  • Katlav A, Cook JM, Riegler M (2021) Egg size‐mediated sex allocation and mating‐regulated reproductive investment in a haplodiploid thrips species (T Houslay, Ed.). Funct Ecol 35:485–498

    Article  CAS  Google Scholar 

  • Katlav A, Cook JM, Riegler M (2022) Common endosymbionts affect host fitness and sex allocation via egg size provisioning. Proc R Soc B 289:20212582

    Article  PubMed  PubMed Central  Google Scholar 

  • Katlav A, Nguyen DT, Cook JM, Riegler M (2021) Constrained sex allocation after mating in a haplodiploid thrips species depends on maternal condition. Evolution 75:1525–1536

    Article  PubMed  Google Scholar 

  • Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V et al. (2021) Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 29:879–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima EW, Rodrigues JCV, Freitas-Astua J (2010) An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Sci agric (Piracicaba, Braz) 67:348–371

    Article  Google Scholar 

  • Lenth R, Singmann H, Love J, Buerkner P, Herve M (2022) emmeans: estimated marginal means, aka least-squares means. R Package. https://github.com/rvlenth/emmeans

  • LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD et al. (2017) Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Zhang Z-Q (2018) Does size matter? Fecundity and longevity of spider mites (Tetranychus urticae) in relation to mating and food availability. Syst Appl Acarol 23:1796

    Google Scholar 

  • Ma W-J, Schwander T (2017) Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evolut Biol 30:868–888

    Article  Google Scholar 

  • Macke E, Magalhães S, Do-Thi Khanh H, Frantz A, Facon B, Olivieri I (2012) Mating Modifies Female Life History in a Haplodiploid Spider Mite. Am Naturalist 179:E147–E162

    Article  Google Scholar 

  • Macke E, Magalhães S, Khan HD-T, Luciano A, Frantz A, Facon B et al. (2011) Sex allocation in haplodiploids is mediated by egg size: evidence in the spider mite Tetranychus urticae Koch. Proc R Soc B 278:1054–1063

    Article  PubMed  Google Scholar 

  • Mitchell R (1972) The sex ratio of the spider mite Tetranychus urticae. Entomol Exp Appl 15:299–304

    Article  Google Scholar 

  • Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248

    Article  CAS  PubMed  Google Scholar 

  • Overmeer W, Harrison R (1969) Notes on the control of the sex ratio in populations of the two-spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae). NZ J Sci 12:920–928

    Google Scholar 

  • Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A, Woyke T et al. (2012) Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii (NA Moran, Ed.). PLoS Genet 8:e1003012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrot-Minnot M-J, Cheval B, Migeon A, Navajas M (2002) Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae: Contrasting effects of Wolbachia in a haplodiploid mite. J Evolut Biol 15:808–817

    Article  Google Scholar 

  • Poinsot D, Bourtzis K, Markakis G, Savakis C, Merçot H (1998) Wolbachia transfer from Drosophila melanogaster into D. simulans: host effect and cytoplasmic incompatibility relationships. Genetics 150:227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter DA, Wrensch DL, Johnston DE (1976) Guarding, aggressive behavior, and mating success in male two-spotted spider mites. Ann Entomological Soc Am 69:707–711

    Article  Google Scholar 

  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  • Robertson NL, Carroll TW (1988) Virus-Like Particles and a Spider Mite Intimately Associated with a New Disease of Barley. Science 240:1188–1190

    Article  CAS  PubMed  Google Scholar 

  • Ross PA, Turelli M, Hoffmann AA (2019) Evolutionary ecology of Wolbachia Releases for disease control. Annu Rev Genet 53:93–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA (2017) Wolbachia Infections in Aedes aegypti differ markedly in their response to cyclical heat stress (EA McGraw, Ed.). PLoS Pathog 13:e1006006

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan H-W, Luan J-B, Liu Y-Q, Douglas AE, Liu S-S (2019) The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. Proc R Soc B 286:20191677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shropshire JD, Leigh B, Bordenstein SR (2020) Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 9:e61989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takafuji A, Ishii T (1989) Inheritance of sex ratio in the Kanzawa spider mite, Tetranychus kanzawai Kishida. Popul Ecol 31:123–128

    Article  Google Scholar 

  • Tanahashi M, Fukatsu T (2018) Natsumushi: Image measuring software for entomological studies: Image measuring software for entomology. Entomol Sci 21:347–360

    Article  Google Scholar 

  • Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513

    PubMed  Google Scholar 

  • Vala F, Breeuwer JAJ, Sabelis MW (2000) Wolbachia–induced ‘hybrid breakdown’ in the two–spotted spider mite Tetranychus urticae Koch. Proc R Soc Lond B 267:1931–1937

    Article  CAS  Google Scholar 

  • Vala F, Van Opijnen T, Breeuwer JAJ, Sabelis MW (2003) Genetic conflicts over sex ratio: mite‐endosymbiont interactions. Am Naturalist 161:254–266

    Article  Google Scholar 

  • Vavre F, Dedeine F, Quillon M, Fouillet P, Fleury F, Boulétreau M (2001) Within-species diversity of Wolbachia-induced cytoplasmic incompatibility in haplodiploid insects. Evolution 55:1710–1714

    CAS  PubMed  Google Scholar 

  • Vavre F, Fleury F, Varaldi J, Fouillet P, Bouleatreau M (2000) Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects: Epidemiologic and evolutionary consequences. Evolution 54:191–200

    CAS  PubMed  Google Scholar 

  • Wang Y-B, Ren F-R, Yao Y-L, Sun X, Walling LL, Li N-N et al. (2020) Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. ISME J 14:2923–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks AR, Breeuwer JAJ (2001) Wolbachia–induced parthenogenesis in a genus of phytophagous mites. Proc R Soc Lond B 268:2245–2251

    Article  CAS  Google Scholar 

  • Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc B: Biol Sci 282:20150249–20150249

    Article  Google Scholar 

  • Wybouw N, Mortier F, Bonte D (2022) Interacting host modifier systems control Wolbachia‐induced cytoplasmic incompatibility in a haplodiploid mite. Evol Lett 6:255–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Zélé F, Santos I, Matos M, Weill M, Vavre F, Magalhães S (2020) Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions. Heredity 124:603–617

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Masahiko Tanahashi for assisting with the Natsumushi analyses, Sara Magalhães and Fabrice Vavre for useful discussions, Martijn Egas for confirming the error in Egas et al. 2002, and Guillaume Martin for his help with identifying the equilibria of the mathematical model. We also thank Bouwe Cattrysse for generating exploratory pilot data for the LonX-c and LonX-w lines. NW was supported by a BOF post-doctoral fellowship (Ghent University, 01P03420) and by a Research Foundation-Flanders (FWO) Research Grant (1513719N). This work was further supported by the FWO Research Network EVENET. This is contribution ISEM-2023-125 of the Institute of Evolutionary Science of Montpellier (ISEM).

Author information

Authors and Affiliations

Authors

Contributions

NW conceived and designed the experiments. NW, EVR, and JZ performed the experiments. FZ extended the model and performed the simulations. NW, FZ, and DB analyzed the data. NW wrote the manuscript with input from FZ and DB. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Nicky Wybouw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Darren Obbard.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wybouw, N., Van Reempts, E., Zarka, J. et al. Egg provisioning explains the penetrance of symbiont-mediated sex allocation distortion in haplodiploids. Heredity 131, 221–229 (2023). https://doi.org/10.1038/s41437-023-00638-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00638-1

This article is cited by

Search

Quick links